
Deutscher Ausschuß für Stahlbau DASt

1/2014 Forschungsbericht

Ermüdungsfestigkeit von Montagestößen in Vollwandträgern mit dicken Gurten

17104 N

Urheberbezeichnung (Copyright); Haftungsausschluss

Dieses Werk und dessen Inhalte sind urheberrechtlich geschützt. Die Nutzungs- und Verwertungsrechte liegen beim Deutschen Ausschuss für Stahlbau e.V. DASt (Sohnstraße 65, 40237 Düsseldorf). Verstöße gegen das Urheberrecht (z.B. das unberechtigte Kopieren von Texten) sind gemäß §§ 106 ff. UrhG strafbar und wird mit Freiheitsstrafe oder Geldstrafe bestraft. Der Versuch ist ebenfalls strafbar. Daneben könne zivilrechtliche Schadensersatzund Vergütungsansprüche bestehen.

Bei der Erstellung dieses Werkes wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht vollständig ausgeschlossen werden. Für fehlerhafte Angaben und deren Folgen kann daher keine Haftung übernommen werden; dies gilt nicht für Vorsatz oder grobe Fahrlässigkeit. Rechtsansprüche aus der Benutzung der Daten sind insoweit ausgeschlossen.

Angaben über Normen beziehen sich auf den Veröffentlichungszeitpunkt.

Für alle Hinweise und Verbesserungsvorschläge sind wir stets dankbar.

Herausgeber: Deutscher Ausschuss für Stahlbau DASt, Düsseldorf

Vertrieb: Stahlbau Verlags- und Service GmbH, Düsseldorf

Oktober 2021

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Forschungsvereinigung Deutscher Ausschuß für Stahlbau e.V.

DASt

Forschungsstelle Universität Stuttgart

Institut für Konstruktion und Entwurf

Prof. Dr.-Ing. Ulrike Kuhlmann

IGF-Nummer 17104 N

DASt-Homepage www.stahlbauforschung.de

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Förderhinweis

Das IGF-Vorhaben "Ermüdungsfestigkeit von Montagestößen in Vollwandträgern mit dicken Gurten", IGF-Projekt Nr. 17104 N, der Forschungsvereinigung Deutscher Ausschuß für Stahlbau, Sohnstraße 65, 40237 Düsseldorf wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Vorwort

Vorwort

Das IGF-Vorhaben 17104 "Ermüdungsfestigkeit von Montagestößen in Vollwandträgern mit dicken Gurten" der Forschungsvereinigung Deutscher Ausschuss für Stahlbau (DASt) wurde im Programm zur Förderung der industriellen Gemeinschaftsforschung und –entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages über die AiF finanziert. Wir danken vielmals für diese finanzielle Unterstützung.

Zudem gilt unser besonderer Dank dem projektbegleitenden Arbeitskreis sowie allen Unternehmen, die das Vorhaben durch Einbringen von Sach-, Geld- und Beratungsleistungen unterstützt haben:

- Max Bögl Stahl- und Anlagenbau GmbH & Co. KG, Neumarkt i. d. Oberpfalz
- Stahlbau Dessau GmbH & Co. KG, Dessau
- Bilfinger MCE GmbH, Linz

Ebenso gilt unser Dank unserem Techniker Herrn Oliver Schneider und den Mitarbeitern der MPA der Universität Stuttgart - insbesondere Herrn Dr.-Ing. Dieter Lotze - für die reibungslose Durchführung der Versuche.

Zusammenfassung

Zusammenfassung

Im Rahmen des Projektes wurden experimentelle und numerische Untersuchungen an

Montagestößen von Vollwandträgern mit dicken und mehrteiligen Gurten durchgeführt. Das

typische Konstruktionsdetail dafür ist der sogenannte Lamellenstoß, der besonders für den

Brückenbau in Deutschland häufig eingesetzt wird.

Im Rahmen des Forschungsvorhabens sollte das Konstruktionsdetail Lamellenstoß aus Sicht

der Ermüdungsfestigkeit experimentell und numerisch untersucht werden.

Bisher wurde das Konstruktionsdetail Lamellenstoß im Rahmen der europäischen Normung

nicht berücksichtigt. Der vorliegende Bericht hat das Ziel genügend Ergebnisse zur Verfügung

zu stellen, um die Klassifizierung der Ermüdungsfestigkeit des Lamellenstoßes in EN 1993-1-

9 [12] zu ermöglichen. Dafür wurde für dieses Forschungsvorhaben die Ermüdungsfestigkeit

an 35 Schwingversuchen ermittelt.

Im Fokus der Untersuchung lagen insbesondere der Einfluss eines Maßstabseffektes sowie

der Einfluss von Blechdickenunterschieden im Lamellenpaket.

Die Ergebnisse zeigen, dass bei den Lamellenstößen ein ausgeprägter Maßstabseffekt

vorliegt und dieser bei der Bemessung berücksichtigt werden muss. Ergänzend zu den

experimentellen Untersuchungen wurden nummerische Berechnungen durchgeführt, an

denen Parameterstudien durchgeführt wurden.

Zusätzlich zu den Versuchen am Lamellenstoß wurden auch Untersuchungen an einem

alternativen Konstruktionsdetail, dem sogenannten Treppenstoß durchgeführt. Die

Eigenschaften hinsichtlich des Ermüdungsverhaltens werden mit dem Lamellenstoß

verglichen.

In den letzten Jahren kommt die für den Stahlbau relativ neue Ultraschalltechnik Phased-Array

verstärkt zum Einsatz. Diese Technik wurde an den Versuchskörpern erprobt. Sie ermöglicht

eine zerstörungsfreie Bauteilprüfung des Lamellenstoßes. Außerdem konnte das

Risswachstum an einigen Versuchskörpern mithilfe von Phased-Array verfolgt werden.

Stuttgart, Februar 2018

Prof. Dr.-Ing. Ulrike Kuhlmann

Dipl.-Ing. (FH) Konrad Kudla (SFI)

M.Sc. Karl Drebenstedt (SFI)

M.Sc. Simon Bove

Inhaltsverzeichnis

<u>Inhaltsverzeichnis</u>

VC	ORWC	ORT.		I
Zι	JSAM	MEN	IFASSUNG	
IN	HALT	SVE	RZEICHNIS	V
1			D DER FORSCHUNG UND NORMUNG	
	1.1	Kon	struktionsdetail	1
	1.2		ersuchungen bis 2011	
	1.3		ersuchungen nach 2011	
	1.4		nd der Normung	
	1.5		eln für die Ausführung von Lamellenstößen	
	1.6	Zus	ammenfassung	6
2	FC	DRS	CHUNGSZIELE UND VERSUCHSPROGRAMM	9
	2.1	Fors	schungsziel	9
	2.2		suchsprogramm	
3	ΕX	(PEF	RIMENTELLE UNTERSUCHUNGEN ZUM LAMELLENSTOß	11
	3.1	Prüf	körperherstellung	11
	3.1.		Übersicht	
	3.1.		Grundmaterial und Schweißnahtvorbereitung der Musterstücke	
	3.1.	3	Schweißen der Musterstücke	
	3.1.	4	Zerlegen des Musterstücks	16
	3.2	Vers	suchsdurchführung und Versuchsauswertung	17
	3.2.	1	Versuchskonzept	17
	3.2.	2	Versuchseinrichtung Serie 100	17
	3.2.	3	Versuchseinrichtung der Serien 200 – 500	19
	3.2.	4	Versagenskriterium	19
	3.2.	5	Versuchsbegleitende Dehnungsmessungen	20
	3.2.	6	Berechnung der Dehnungsverteilung	21
	3.2.	7	Berechnung der Nennspannungsschwingbreiten	22
	3.2.	8	Bestimmung der Biegeanteile	23

	3.3	Versuchsergebnisse der Serie 100	. 24
	3.3.	1 Statische Versuche	. 24
	3.3.	2 Schwingversuche	. 25
	3.3.	3 Dehnungsverteilung	. 26
	3.3.	4 Nennspannungsschwingbreiten	. 27
	3.3.	5 Biegeanteile – Serie 100	. 27
	3.3.	6 Auswertung der Ergebnisse der Serie 100	. 28
	3.4	Versuchsergebnisse der Serie 200	. 29
	3.4.	1 Statische Versuche	. 29
	3.4.	2 Schwingversuche	. 29
	3.4.	Nennspannungsschwingbreiten	. 31
	3.4.	4 Biegeanteile – Serie 200	. 31
	3.4.	5 Auswertung der Ergebnisse der Serie 200	. 32
	3.5	Versuchsergebnisse der Serie 300	. 33
	3.5.	1 Statische Versuche	. 33
	3.5.	2 Schwingversuche	. 33
	3.5.	Nennspannungsschwingbreiten	. 35
	3.5.	4 Biegeanteile – Serie 300	. 36
	3.5.	5 Auswertung der Ergebnisse der Serie 300	. 37
	3.6	Versuchsergebnisse der Serie 400	. 38
	3.6.	1 Statische Versuche	. 38
	3.6.	2 Schwingversuche	. 38
	3.6.	Nennspannungsschwingbreiten	. 41
	3.6.	4 Biegeanteile – Serie 400	. 41
	3.6.	5 Auswertung der Ergebnisse der Serie 400	. 42
4	E	(PERIMENTELLE UNTERSUCHUNGEN ZUM TREPPENSTOß	45
	4.1	Übersicht	. 45
	4.2	Begriffsklärung	. 45
	4.3	Stand der Normung und Forschung	. 45
	4.4	Ziel der Versuche	. 46
	4.5	Beschreibung der Prüfkörper	. 46
	4.5.	1 Einleitung	. 46

	4.5.	2	Grundmaterial und Schweißnahtvorbereitung der Musterstücke	46
	4.5.	3	Schweißen der Musterstücke	47
	4.5.	4	Zerlegen des Musterstücks	49
	4.6	Vers	suchsdurchführung der Serie 500	49
	4.6.	1	Versuchskonzept	49
	4.6.	2	Versuchsbegleitende Dehnungsmessung und Spannungsberechnung	50
	4.7	Vers	suchsergebnisse der Serie 500	51
	4.7.	1	Statische Versuche	51
	4.7.	2	Schwingversuche	52
	4.7.	3	Nennspannungsschwingbreiten	54
	4.7.	4	Auswertung der Ergebnisse der Serie 500	55
5	S1	ATIS	STISCHE AUWERTUNG UND KERBFALLABLEITUNG	57
6	NU	JME	RISCHE UNTERSUCHUNGEN	65
	6.1	Ziel	der numerischen Untersuchung	65
	6.2	Disk	retisierung der Kerbbereiche	65
	6.2.	1	Ermittlung der Versuchskörpergeometrie	65
	6.2.	2	Erstellung der FE Modelle	66
	6.2.	3	Konvergenzstudie	67
	6.3	Bere	echnung von Strukturspannungen	69
	6.3.	1	Strukturspannungskonzept	69
	6.3.	2	Gemessene Strukturspannungen	70
	6.3.	3	Numerische Berechnung der Strukturspannungen	72
	6.3.	4	Bewertung der Ergebnisse	73
	6.4	Bere	echnung von Kerbspannungen	75
	6.4.	1	Kerbspannungskonzept	75
	6.4.	2	Kerbspannungswöhlerlinie	75
	6.4.	3	Ergebnisse an der ursprünglichen Prüfkörpergeometrie	77
	6.5	Para	ameterstudie zum Blechdickeneinfluss	78
	6.5.	1	Blechdickeneinfluss an der Stirnfugennaht	78
	6.5.	2	Einfluss der Schweißnahtüberhöhung in Abhängigkeit der Blechdicke	79
	6.6	Bew	vertung der Ergebnisse	81
7	BF	RUCI	HMECHANISCHE UNTERSUCHUNGEN	83

	7.1.	1 Ermittlung der bruchmechanischen Kennwerte	83
	7.1.	2 Probenentnahme	83
	7.1.	3 Zyklische Bruchmechanikversuche	84
	7.1.	4 Statischer Bruchmechanikversuch	85
	7.1.	5 Ergebnisse der zyklischen Bruchmechanikversuche	85
	7.1.	6 Ergebnisse der statischen Bruchmechanikversuche	86
	7.1.	7 Zusammenfassung der Bruchmechanik Versuche	88
	7.2	Bruchmechanische Berechnungen	88
	7.2.	1 Überblick	88
	7.2.	2 Auswertung von Risswachstumskurven	89
8	EI	NSATZ DER PHASED-ARRAY TECHNIK	91
	8.1	Funktionsweise von Ultraschall Phased-Array Technik	91
	8.2	Zerstörungsfreie Prüfung des Wurzelpunktes der Stirnfugennaht mit Phased-Array	93
	8.3	Vorversuche Risswachstumsdokumentation am Wurzelpunkt der Stirnfugennaht	93
	8.4	Steuerung zur Kopplung einer Universalprüfmaschine mit einem Phased-Array Prüfgerät .	94
9	Zι	JSAMMENFASSUNG UND AUSBLICK	97
	9.1	Zusammenfassung	97
	9.2	Ausblick	98
1(0 LI	TERATURVERZEICHNIS	.99
1 ·	1 ΔΝ	NHANG1	03
•			
	11.1	Chemische und Mechanische Kennwerte	
	11.2	Skalierte und normierte Werte	04

1 Stand der Forschung und Normung

1.1 Konstruktionsdetail

Vollwandträger sind übliche Bauteile im Stahl- und Verbundbrückenbau. Dabei ist es insbesondere bei großen Spannweiten sinnvoll, die Querschnitte der Vollwandträger an die maximal auftretende Beanspruchung anzupassen. Bei einer konstanten Trägerhöhe kann die Anpassung der Gurte entweder durch eine variable Gurtdicke oder zusätzliche Gurtlamellen geschehen.

Aufgrund begrenzter Transportlängen ist es in der Regel notwendig, einen Montagestoß vorzusehen. Ein Stoß zwischen zwei Blechpaketen wird dabei im Folgenden als Lamellenstoß bezeichnet. Eine schematische Darstellung ist in Abb. 1-1 gegeben.

Das Blechpaket umfasst die aufeinander liegenden Bleche. Die einzelnen Bleche des Blechpakets werden im Bereich der Schweißnahtvorbereitung für den Stumpfstoß durch eine Stirnfugennaht verbunden. Diese Stirnfugennaht wird an der Blechtrennung als versenkte Schweißnaht ausgeführt. Die anschließende Schweißung des Stumpfstoßes erfolgte in mehreren Lagen.

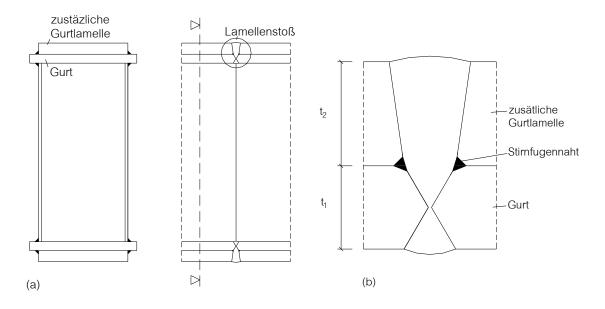


Abb. 1-1: Schematische Darstellung Lamellenstoß: (a) Übersicht, (b) Detail

Der Vorteil von mehrteiligen Gurten besteht in der besseren Ausnutzung der der rechnerischen Streckgrenze (bei Blechen ab 40 mm erfolgt eine Reduzierung der Streckgrenze [6]), der geringeren Sprödbruchgefahr [9] und der hohen Verfügbarkeit von relativ dünnen Blechen. Ein Nachteil in der Anwendung von mehrteiligen Gurten ist der höhere Fertigungsaufwand der aus der größeren Anzahl an Schweißnähten resultiert.

Der Lamellenstoß unterscheidet sich aufgrund der Stirnfugennaht maßgeblich von einem Stumpfstoß. Durch die quer zur Kraftrichtung liegende Stirnfugennaht entsteht in der Schweißnaht eine zusätzliche Kerbe. Es ist naheliegend, ihre Kerbwirkung mit dem Verweis auf den rein konstruktiven Charakter der Naht zu vernachlässigen und nur den Stumpfstoss zu bewerten. Dagegen spricht jedoch, dass in [20] an Schliffen gezeigt wurde, dass Schweißnahtunregelmäßigkeiten in Form von Anrissen an der Wurzel der Stirnfugennaht vorhanden sein können, ohne dass es möglich ist, diese verlässlich durch konventionelle zerstörungsfreie Prüfmethoden zu detektieren. In [21] wurde an experimentellen Untersuchungen gezeigt, dass die Stirnfugennaht unter schwingender Beanspruchung eine kritische Kerbe darstellen kann.

1.2 Untersuchungen bis 2011

Im Jahr 1974 untersuchte das Laboratorium für Betriebsfestigkeit in Darmstadt (LBF) die Ermüdungsfestigkeit von Lamellenstößen [24]. 1982 erfolgte mit [25] eine Erweiterung auf dreiteilige Lamellenstöße. Die Versuchsreihen waren in ihrem Versuchsumfang begrenzt und die Blechdicken der Einzelbleche waren mit 31,5 mm aus heutiger Sicht relativ gering. Die Versuchskörper wurden nicht in Zwangslage geschweißt und sind aus diesem Grund hinsichtlich der Ermüdungsfestigkeit nur bedingt mit auf der Baustelle geschweißten Lamellenstößen vergleichbar. Die im Rahmen der LBF Untersuchungen angewandten Schweißprozesse für den Lamellenstoß entsprechen nicht mehr dem heutigen Stand der Technik. Der angewandte Schweißprozess E-Hand (Kennzahl 111 nach [10]) ist zum Schweißen eines Lamellenstoßes heute nicht mehr üblich.

Im Rahmen der LBF Forschungsberichte wurden auch die Ergebnisse älterer Schwingversuche an übereinanderliegenden Gurtplatten zusammengefasst. Genauere Informationen zur Prüfköperfertigung und dem Versuchsaufbau sind hier jedoch nicht bekannt. Von der Bundesanstalt für Materialforschung (BAM) wurden Ende der 1980er Jahre Träger in Schwingversuchen untersucht, die unter baustellenähnlichen Bedingungen (Schweißen in Zwangsposition) gefertigt wurden [17]. Auch hier sind die Blechdicken aus heutiger Sicht relativ gering. Die Schweißungen an den Lamellenstößen wurden ebenfalls mit dem Schweißprozess 111 durchgeführt.

Ausgehend von einem konkreten Anwendungsfall im europäischen Ausland wurden 2010 von der Firma *Max Bögl Stahl- und Anlagenbau GmbH & Co KG* aus Neumarkt in der Oberpfalz Lamellenstöße mit 80 und 100 mm dicken Blechen unter Baustellenbedingungen gefertigt. Diese wurden im Zusammenhang mit den Untersuchungen in [20] geprüft. Die Untersuchungen zeigten, dass der Größeneffekt einen ausgeprägten Einfluss auf die Ermüdungsfestigkeit von Lamellenstößen besitzt.

Alle bekannten Untersuchungen vor 2011 sind in Tabelle 1 zusammengefasst. Die unterschiedlichen Varianten der Schweißnahtvorbereitung sind in Abb. 1-2 dargestellt.

Tabelle 1: Experimentelle Untersuchungen vor 2011

Nr.	Jahr	Anzahl Prüfkörper	Bleckdicke [mm]	R	Zwangslage	Stahlsorte	Schweißnaht- vorbereitung	Quelle
1	1974	6	31,5 / 31,5	-1	Х	St 52-3	Abb. 1-2/a	[24]
2	1974	10	31,5 / 31,5	0	х	St 52-3	Abb. 1-2/a	[24]
3	1978 / 1979	15	10 / 10	0,1	?	St 37-2	?	[25]
4	1978 / 1979	14	10 / 10	0,1	?	St 52-3	?	[25]
5	1978 / 1979	14	25 / 25	0,1	?	St 52-3	?	[25]
6	1978 / 1979	14	25 / 25	0,1	?	Kt 52-3	?	[25]
7	1978 / 1979	16	25 / 25	0,1	?	St 37-2	?	[25]
8	1982	8	50 / 50 / 50	-1	х	St 37-2	Abb. 1-2/c	[25]
9	1982	8	50 / 50 / 50	0	х	St 37-2	Abb. 1-2/c	[25]
10	1982	7	30 / 40 /30	-1	х	St 37-2	Abb. 1-2 /c	[25]
11	1982	9	30 / 40 /	0	х	St 37-2	Abb. 1-2 /c	[25]
12	1989	16	25 / 20	-1	√	St 37-2	Abb. 1-2 /d	[17]
13	2010	12	80 /100 + 90 /100	0,1	√	S 355	Abb. 1-2 /d	[20]

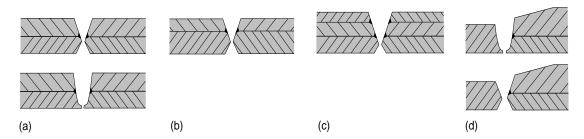


Abb. 1-2: Schweißnahtvorbereitungen an unterschiedlichen Typen von Lamellenstößen

1.3 Untersuchungen nach 2011

Im Rahmen eines Forschungsvorhabens des *Deutschen Ausschusses für Stahlbau* (DASt) [21] wurden 2011 in zwei Versuchsreihen das Ermüdungsverhalten von Lamellenstößen mit Dicken von 80-100 mm und 20-25 mm untersucht. Dabei sollte gezielt der Blechdickeneinfluss auf das Konstruktionsdetail Lamellenstoß abgeschätzt werden. Die Versuchskörperherstellung und Versuchsdurchführung entsprach dabei im Wesentlichen dem Vorgehen im Rahmen des vorliegenden Projektes (siehe Kapitel 3.1). Die Versuchsreihen aus [21] sind in Tabelle 2 dargestellt.

Tabelle 2: Experimentelle Untersuchungen nach 2011

Nr.	Jahr	Anzahl Prüfkörper	Bleckdicke [mm]	R	Zwangslage	Stahlsorte	Schweißnaht- vorbereitung	Quelle
1	2013	12	80 / 100	0,1	✓	S 355	Abb. 1-2/a	[21]
2	2013	12	20 / 25	0,1	√	S 355	Abb. 1-2/a	[21]

1.4 Stand der Normung

In DS 804: Vorschriften für Eisenbahnbrücken und sonstige Ingenieurbauwerke [14] wurde der Lamellenstoß erstmals als Kerbdetail eingeordnet. Versuche dazu wurden in den bereits genannten LBF Forschungsberichte durgeführt [24], [25], siehe auch Tabelle 1. Die Angaben zur Ausführung des Lamellenstoßes aus DS 804 [14] wurden in RIL 804 [26] übernommen. In der Ausgabe des DIN-Fachberichts 103 von 2003 war der Lamellenstoß nicht enthalten und wurde in der Ausgabe des DIN-Fachberichts 103 von 2009 [13] und parallel im Nationalen Anhang zu DIN EN 1993-2 [11] als Kerbdetail aufgenommen und in die Kerbgruppe 71 eingeordnet.

In der Regel wird der Lamellenstoß in Blechpaketen mit großen Blechdicken ausgeführt. Die Versuche in [20] an großen Blechdicken zeigte, dass der Größeneinfluss einen großen Einfluss auf die Ermüdungsfestigkeit besitzt. Nach Abs. II-9.7 in DIN-Fachbericht 103 [13]

muss der Einfluss der Blechdicke auf die Ermüdungsfestigkeit dabei ab einer Wanddicke von 25 mm berücksichtigt werden. Bezogen auf den Lamellenstoß geht aus DIN-Fachbericht 103 an dieser Stelle nicht klar hervor, ob die Formel zur Blechdickenreduzierung auf das Gesamtpaket oder auf die einzelne Lamelle angewendet werden muss. Im Nationalen Anhang zu DIN EN 1993-2 [1] wurde aufgrund der in [21] durchgeführten Untersuchungen die Blechdicke des Gesamtpakets als maßgebende Blechstärke festgelegt, Abb. 1-3.

Kerbfall		Konstruktiondetail	Beschreibung	Anforderung
71	Blechdicken- abhängigkeit für t>25 mm: $k_s=(25/t)^{0.2}$	t	Mehrteilige, quer zur Kraftrichtung durch Stumpfnaht verbundene Bau- teile	Die einzelnen Gurtplatten sind zunächst mittels Stirn- fugennähten zu verbinden. Diese müssen bei der Her- stellung der Stumpfnähte erhalten bleiben.

Abb. 1-3: Kerbfall Lamellenstoß nach DIN EN 1993-2 NA

In den Empfehlungen des International Institute of Welding (IIW) [18] ist der Lamellenstoß nicht aufgeführt.

Auch im Rahmen der europäischen Stahlbaunormung (Eurocode 3 [10]) wurde das Konstruktionsdetail bisher nicht berücksichtigt.

1.5 Regeln für die Ausführung von Lamellenstößen

Die Ausführung von Lamellenstößen ist in RIL 804 (RIL 804.4101 Abs. 37) [26] der Deutschen Bahn geregelt. Dort werden folgende konstruktive Anforderungen gestellt.

- Aufeinanderliegende Gurtplatten dürfen nicht an gleicher Stelle gemeinsam gestoßen werden, ausgenommen bei Baustellenstößen.
- Bei der Herstellung der Montagestöße müssen die Stirnfugennähte erhalten bleiben.
- Die maximale Gesamtdicke darf nur 150 mm betragen, wobei bei der Dicke der einzelnen Gurtplatten auf t = 100 mm zu begrenzen ist.
- Lamellenpakete mit 2 und 3 Gurtplatten, die dicker als 150 mm ausgeführt werden, dürfen nur mit Genehmigung verwendet werden.

In Abb. 1-4 werden zwei Möglichkeiten zur Schweißkantenvorbereitung vorgeschlagen. Auf Grund der heutigen Fertigungsmöglichkeiten wird die 2. Variante (2/3 X-Naht) in den meisten Fällen bevorzugt. RIL 804 [26] schreibt eine Fugenvorbereitung am unteren Blech mit einem beidseitigen Flankenöffnungswinkel von 60° und einem Luftspalt zwischen den Blechpaketen vor. Die Flanken des oberen Bleches werden unter einem Winkel von 8° angeschrägt. Der Spalt zwischen den einzelnen Blechen an der Stelle, an der die Stirnfugennaht eingebracht wird, ist nicht geregelt.

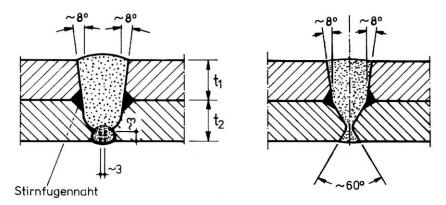


Abb. 1-4: Auszug aus DS 804 [14]

1.6 Zusammenfassung

Die Auswertung der in Tabelle 1 und Tabelle 2 zusammengefassten Versuchsergebnisse zur Bewertung der Ermüdungsfestigkeit von Lamellenstößen zeigt, dass in der Vergangenheit insbesondere kleinere und mittlere Blechdicken untersucht wurden. Der technische Fortschritt erlaubt in der heutigen Zeit Querschnitte mit Blechpaketdicken von bis zu 200mm. Die Untersuchungen in [20] und [21] verdeutlichen, dass dieser die Ermüdungsfestigkeit maßgeblich beeinflusst.

Bisherige Versuchsreihen sind in Abb. 1-5 dargestellt. Aus Gründen der Vergleichbarkeit sind nur Versuche mit R > 0 dargestellt. Versuchsergebnisse an Prüfkörpern deren Blechdickenpaket größer als 180 mm ist (◆ und ■) liegen tendenziell am unteren Rand des Streufeldes.

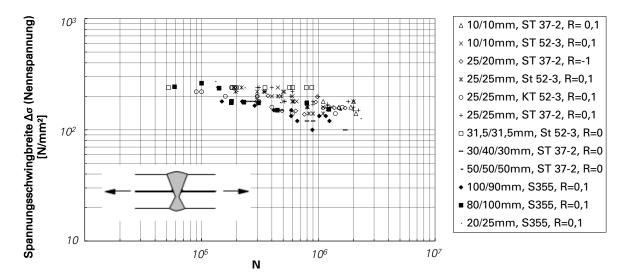


Abb. 1-5: Darstellung der bisherigen Untersuchungen

Die Versuche zeigen, dass der Größeneffekt einen Einfluss auf die Ermüdungsfestigkeit des Lamellenstoßes besitzt. Die Frage ob das größte Einzelblech oder die Gesamtblechdicke in Bezug auf den Größeneinfluss zu berücksichtigen ist, kann anhand der alten Untersuchungen nicht bewertet werden.

2 Forschungsziele und Versuchsprogramm

2.1 Forschungsziel

Zentrales Ziel der Arbeit war es, die Datenbasis zu Ermüdungsversuchen von Lamellenstößen, gefertigt nach dem heutigen Stand der Technik und im Bereich heute üblicher Blechdickenpakete, zu erweitern. Auf dieser Grundlage sollte der Einfluss des Größeneffektes und der Einfluss von Blechdickenunterschieden auf die Kerbfallzuordnung ermöglicht werden. Die Versuche sollten anschließend mit numerischen Untersuchungen an Finite Element Modellen nachvollzogen werden. Darauf aufbauend sollten Parameterstudien zu weiteren die Ermüdungsfestigkeit beeinflussenden Faktoren durchgeführt werden.

Mit Hilfe der Bruchmechanik und der Ultraschalltechnik Phased-Array sollen zudem Untersuchungen zur Risswachstumsgeschwindigkeit durchgeführt werden.

2.2 Versuchsprogramm

Das Versuchsprogramm umfasste Ermüdungsversuche die sowohl die obere Blechdickengrenze (Serie 100) als auch die theoretische untere Blechdickengrenze (Serie 200) abbilden. Die weiteren Versuchsserien lagen zwischen diesen beiden Grenzen (Serie 300 und 400). Der Einfluss von unterschiedlichen Blechdicken innerhalb eines Blechpaketes sollte anhand der Versuchsserie 400 untersucht werden. Die Versuche der Serie 100 und 200 schließen systematisch an die Versuche aus [21] an, die ebenfalls von der verantwortlichen Forschungsstelle durchgeführt wurden.

In Serie 500 wurde auf Anregung des projektbegleitenden Ausschusses ein alternatives Detail zur Vollstoßausbildung, der sogenannte Treppenstoß, untersucht und mit dem Lamellenstoß verglichen.

In Tabelle 3 sind die Versuchsserien im Rahmen dieses Forschungsprojektes zusammengefasst:

Tabelle 3: Versuchsprogramm

Versuchsziele:		Größeneffekt		Blechdicken- verhältniss	Vergleich Treppenstoß
Versuchsserien	Serie 100	Serie 200	Serie 300	Serie 400	Serie 500
t ₁ [mm]	80	20	40	25	40
t ₂ [mm]	100	25	50	50	40
t ₁ /t ₂	0.8	0.8	0.8	0.5	1
Anzahl der Ermüdungsversuche	5 (15 mit [21])	10	5 (15 mit [21])	10	5

3 Experimentelle Untersuchungen zum Lamellenstoß

3.1 Prüfkörperherstellung

3.1.1 Übersicht

Um repräsentative Prüfkörper testen zu können, war die Fertigung von großformatigen, bauteilähnlichen Musterstücken erforderlich – je Versuchsserie ein Musterstück. Die Musterstücke wurden anschließend in die einzelnen Prüfkörper zerlegt, Abb. 3-1. Um größtmögliche Realitätsnähe der Versuchsergebnisse sicherzustellen, wurden die Musterstücke, von denen das größere 3,2 t wog und dessen Schweißnähte mehr als 160 Schweißraupen besaßen, unter erheblichem Einsatz von Arbeitszeit und Material unter Baustellenbedingungen gefertigt.

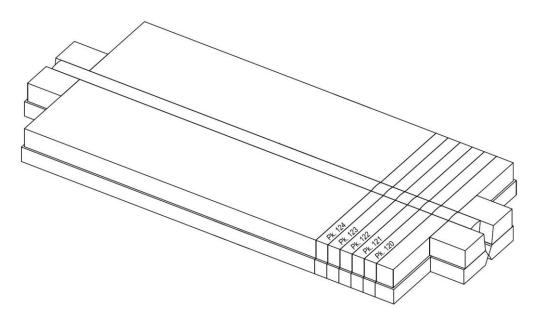


Abb. 3-1: Anordnung der Prüfkörper innerhalb des Musterstücks am Bespiel der Serie 100

Die Herstellung und Lieferung der Prüfkörper erfolgte in Form von Spenden der *Max Bögl Stahl- und Anlagenbau GmbH & Co KG* aus Neumarkt in der Oberpfalz (Versuchsserien 100-300) und von *Bilfinger MCE GmbH* aus Linz, Österreich (Versuchsserie 400).

3.1.2 Grundmaterial und Schweißnahtvorbereitung der Musterstücke

Die Musterstücke der einzelnen Serien bestanden jeweils aus zwei Einzelblechen mit den in im Versuchsprogramm aufgeführten Blechdicken. Durch das Fügen der Bleche entstanden Blechpakete mit einer Gesamtdicke von bis zu 180 mm (Serie 100), siehe Abb. 3-2.

Als Grundmaterialien wurde Stahl der Güte S355NL und S355J2+N verwendet. Die chemischen und mechanischen Kennwerte der einzelnen Bleche sind aus den zugehörigen Abnahmeprüfzeugnissen entnommen, siehe Anhang 11.1.

Die Bleche wurden durch Brennschneiden auf Länge zugeschnitten. Die Schweißnahtvorbereitung an den Blechkanten erfolgte ebenfalls durch Brennscheiden. Die Öffnungswinkel der Schweißnahtvorbereitung entspricht den Vorgaben der RIL 804 [26]. Bei Straßenbrücken ist die Ausführung von Lamellenstößen nicht geregelt, hier kommen jedoch häufig die Ausführungshinweise aus dem Eisenbahnbrückenbau zur Anwendung.

Die Musterkörper wurden aus Blechen hergestellt, die bis zu 2.000 mm lang waren. Aus diesen wurden nach dem Schweißen des Lamellenstoßes die einzelnen Prüfkörper durch Sägen herausgeschnitten.

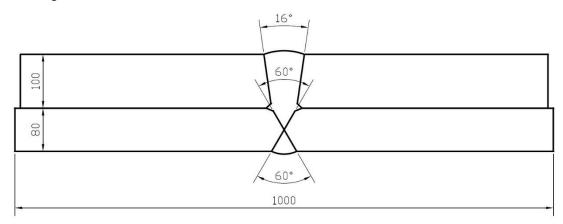


Abb. 3-2: Beispiel für einen Prüfkörper, hier der Serie 100

3.1.3 Schweißen der Musterstücke

Die Schweißarbeiten an den Versuchskörpern wurden unter realistischen Bedingungen durchgeführt. Die Schweißreihenfolge, der Schweißlagenaufbau und die Schweißpositionen (Zwangslage) entsprachen einer typischen Baustellenschweißung.

Nach dem Zuschnitt der Bleche wurden in Verlängerung der späteren Stumpfnaht Anlaufbleche bzw. Auslaufbleche angebracht. Anschließend wurde die Schweißnahtvorbereitung durch Brennschneiden ausgeführt. Die Oberflächen wurden nach dem Brennschneiden durch einen Winkelschleifer bearbeitet, um den beim Brennschneiden entstandenen Zunder zu entfernen.

Anschließend wurde aus den Einzelblechen das Blechpaket zusammengesetzt. Die Bleche wurden übereinander gelegt und zueinander ausgerichtet. Das Blechpaket wurde durch Schraubzwingen in seiner Lage fixiert. Anschließend wurden die Bleche mit einem Brausebrenner auf 180°C vorgewärmt. Die Vorwärmtemperatur wurde an der Oberfläche durch ein Kontaktthermometer kontrolliert. Dadurch, dass das jeweils obere Blech umlaufend

10 mm kleiner ausgeführt wurde als das untere Blech, konnten die Bleche umlaufend mittels Kehlnähten verschweißt werden.

Nach dem Vorwärmen wurden die Bleche mit 100 mm langen Heftnähten verschweißt. Im Bereich der Stirnfugennaht des späteren Lamellenstoßes wurden die Bleche zusätzlich durch eine hydraulische Klemme vorgespannt und ebenfalls mit 100 mm langen Heftnähten vorgebunden.

Nach dem Schweißen der Heftnähte wurden die Bleche unter Einhaltung der Vorwärmtemperatur außen umlaufend verschweißt.

Die Fotos in Abb. 3-3 zeigen die einzelnen Arbeitsschritte.

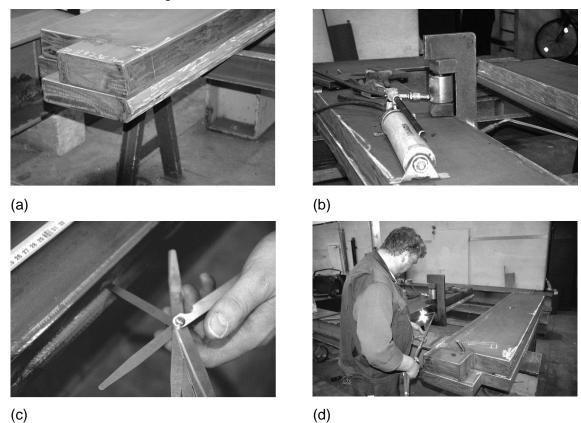


Abb. 3-3: Herstellung der Blechpakete: (a) Schweißnahtvorbereitung, (b) Klemmvorrichtung, (c) Spaltmaßbestimmung, (d) Vorwärmen

Die Stirnfugennaht wurde in sechs Lagen geschweißt und nach dem Auskühlen der Blechpakete blecheben mit der eigentlichen Schweißnahtvorbereitung verschliffen und nach diesem Arbeitsgang mit Magnetpulver auf Oberflächenrisse geprüft. Die bisher dargestellten Arbeitsschritte entsprechen einer üblichen Vorfertigung in der Werkstatt. Im Brückenbau wären solche Blechpakete Teil eines Brückenschusses und werden üblicherweise im Ober- oder Untergurt verbaut. Auf der Baustelle würden dann zwei Brückenschüsse zusammengefügt. Das daraus resultierende Konstruktionsdetail ist der Lamellenstoß.

Die Schweißarbeiten am Lamellenstoß wurden unter ähnlichen Bedingungen durchgeführt, wie sie beim Schweißen auf der Baustelle vorliegen. Um ein freies Schrumpfen der Schweißnaht zu behindern, wurden unter den Blechpaketen zwei Querstege angeschweißt.

Die Blechpakete wurden um 5 mm geneigt, um eine spätere Winkelschrumpfung auszugleichen, siehe Abb. 3-4. Die Querstege hatten im Bereich der Schweißnaht einen Freischnitt, somit konnte die Schweißnaht auf der Unterseite auf ganzer Länge durchgeschweißt werden. Durch die in Abb. 3-4 und Abb. 3-5 dargestellte Unterkonstruktion wurde eine Arbeitshöhe auf der Unterseite der Blechpakete eingestellt, die einer möglichen Baustellenschweißung entspricht.

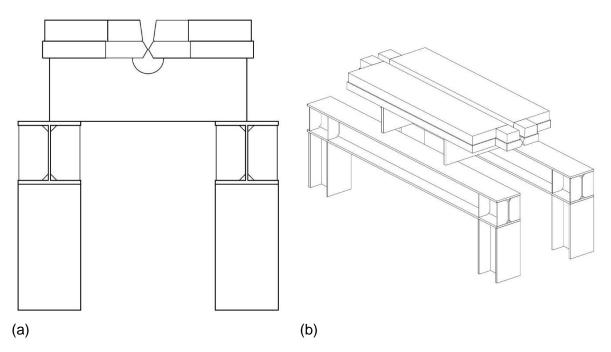


Abb. 3-4: Lagerung des Musterstücks 100 während des Schweißens: (a) Seitenansicht, (b) Isometrie

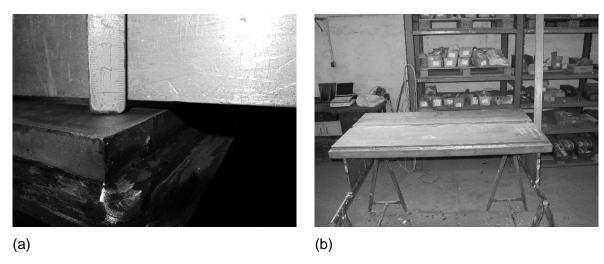


Abb. 3-5: (a) Vorkrümmung, (b) Vorderansicht

Nach dem Aufbau des Schweißarbeitsplatzes wurden die Blechpakete auf 180°C, mit zwei Brausebrennern flächig vorgewärmt. Die Temperatur wurde an der Oberfläche mit einem Kontaktthermometer kontrolliert. Durch das Vorwärmen, und ein anschließendes Halten der

Temperatur bei 150°C, kann davon ausgegangen werden, dass die Bleche voll durchgewärmt wurden. Für das Vorwärmen waren ca. 1,5 Arbeitsstunden notwendig. Anschließend wurden an den Enden und in der Mitte 100 mm lange Heftnähte auf einer Keramik - Schweißbadsicherung zur Fixierung der Blechpakete geschweißt. Nach diesem Arbeitsgang wurden die Enden der Heftnähte angeschliffen und die Wurzel ebenfalls auf einer Keramik-Schweißbadsicherung geschweißt. Die Heftnähte und die Wurzel wurden MAG mit einer Metallpulver Fülldrahtelektrode Oerlikon Fluxofil M10 Ø 1,2 mm geschweißt. Während des Schweißens der Wurzel und der Heftnähte wurde die Temperatur durch weiteres Vorwärmen zwischen 150-180°C gehalten und in regelmäßigen Abständen kontrolliert. Nach dem Schweißen der Wurzel wurde auf der Oberseite der Bleche ein UP-Eindraht-Schweißtraktor aufgebaut. Dieser Traktor wurde durch eine aufgeklemmte Schiene geführt. Die Fülllagen wurden mit einer basischen Fülldrahtelektrode Ø 4 mm Fluxocord 31HD und dem zugehörigen basischem Schweißpulver OP121 TT geschweißt, die Schweißreihenfolge ist in Abb. 3-6 dargestellt.

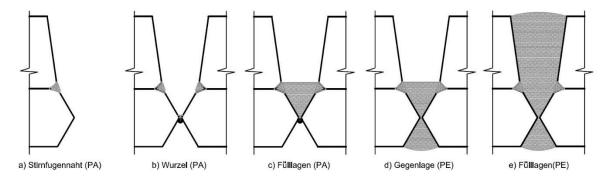


Abb. 3-6: Schweißreihenfolge

Nach dem Schweißen einer Schweißraupe wurde die Zwischenlagentemperatur durch weiteres Anwärmen auf eine Temperatur von 150°C gehalten. Der Bereich bis zur Stirnfugennaht wurde in der Position PA mit 24 Schweißraupen gefüllt. Danach kühlte das Musterstück über Nacht auf ca. 50°C herunter. Im nächsten Arbeitsschritt wurde auf der Unterseite die Wurzel durch Elektrodruckluft ca. 4 mm ausgefugt und durch einen Fingerschleifer ausgeschliffen. Die Unterseite wurde nach dem Ausfugen und Schleifen durch Farbeindringprüfung auf Oberflächenrisse geprüft. Anschließend wurde das Musterstück wieder auf die notwendige Vorwärmtemperatur von 150°C vorgewärmt und in der Position PE die Gegenlagen geschweißt. Die Gegenlagen wurden mit einem Rutil-Fülldraht mit schnell erstarrender Schlacke geschweißt. Die Schweißnahtvorbereitung wurde von der Unterseite unter ständigem Nachwärmen und Kontrolle der Zwischenlagentemperatur mit ca. 55

Schweißraupen gefüllt. Anschließend wurden von der Oberseite die restlichen 109 Schweißraupen UP geschweißt, Abb. 3-7.

(a) (b)

Abb. 3-7: Während der Schweißarbeiten: (a) MAG-Schweißen, (b) Schweißtraktor mit Führungsschiene

3.1.4 Zerlegen des Musterstücks

Nach Abschluss der Schweißarbeiten wurde die Unterkonstruktion vom eigentlichen Musterstück abgetrennt. Die Rippen, die unter dem Schweißstoß als Stege aufgeschweißt wurden, um ein freie Winkelschrumpfung der Bleche zu verhindern, wurden durch Brennschneiden von unten nach oben aufgeschnitten.

Beim Aufschneiden zeigte sich, dass sich in den Blechen nach dem Abkühlen des Lamellenstoßes äußerst geringe Spannungen frei gesetzt haben. Es wurde keine Veränderung des Winkelverzuges an der Oberseite des Lamellenstoßes gemessen. Der Trennschnitt ist in Abb. 3-8 abgebildet.

(a) (b)

Abb. 3-8: Sägearbeiten: (a) Auftrennen der Unterkonstruktion, (b) Sägen

Der Lamellenstoß wurde durch Ultraschall auf Schweißnahtunregelmäßigkeiten geprüft. Bei der Prüfung wurden im eigentlichen Stumpfstoß keine registrierpflichtigen Unregelmäßigkeiten detektiert. Die Stirnfugennaht kann allgemein auf Grund der geometrischen Verhältnisse nicht

zuverlässig mit konventioneller Ultraschallprüftechnik, die für Schweißnähte üblich ist, geprüft werden.

Im Anschluss an die Ultraschallprüfung wurde die Schweißnaht in Querrichtung durch eine Kaltkreissäge je nach Versuchsserie in fünf bzw. zehn 60 mm bzw. 40 mm breite Streifen aufgeschnitten, Abb. 3-8. Ein Beispiel für die Aufteilung der Prüfkörper zeigt Abb. 3-1. Die ersten 90 mm der Schweißnaht und die Bereiche, in denen die Rippen angeschweißt waren, wurden nicht als Prüfkörper verwendet. Die Schnittflächen der Prüfkörper wurden beidseitig Oberflächen planparallel mit einer Toleranz ±0,1 mm gefräst.

3.2 Versuchsdurchführung und Versuchsauswertung

3.2.1 Versuchskonzept

Die Ermüdungsfestigkeiten aller Prüfkörper wurden in Schwingversuchen bestimmt. Hierzu wurden die Prüfkörper mit einer Zugkraft von bis zu 2.500 kN schwellend beansprucht. Die Schwingbeanspruchung wurde einstufig aufgebracht (klassischer *Wöhler*versuch). Das Spannungsverhältnis betrug bei allen Versuchen $R \approx 0,1$. Die maximale Prüffrequenz der Serie 100 war aufgrund der großen Lasten versuchstechnisch begrenzt auf f = 2 Hz. Für alle anderen Serien betrug die Prüffrequenz zwischen f = 5 und 8 Hz.

Vor den eigentlichen Schwingversuchen wurden alle Versuchskörper statisch vorbelastet. Die statischen Versuche und die Schwingversuche wurden kraftgesteuert bei Raumtemperatur ($\approx 22^{\circ}C$) durchgeführt.

3.2.2 Versuchseinrichtung Serie 100

Alle Schwingversuche der Serie 100 wurden auf einer 5 MN Universalprüfmaschine der Marke *Amsler* an der Materialprüfanstalt (MPA Stuttgart, *Otto-Graf-*Institut) der Universität Stuttgart durchgeführt, Abb. 3-9. Das obere Querhaupt der Prüfmaschine diente als Festlager. Die Prüfkraft wurde über einen Hydraulikzylinder aufgebaut, der die Kraft über das untere Spannzeug in den Prüfkörper einleitet.

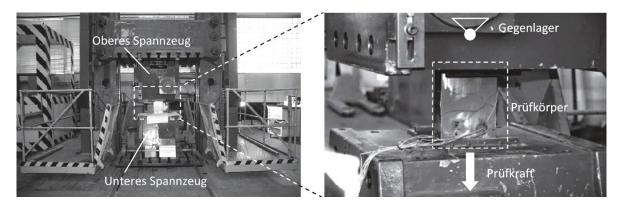


Abb. 3-9: Versuchsaufbau für die Prüfkörper der Serie 100 mit Vergrößerung (rechts)

Zwischen dem unteren Nutentisch, auf dem das Spannzeug aufgeschraubt war, und dem Hydraulikzylinder war eine Kalotte eingebaut, die leichte Verdrehungen des Nutentisches und somit Zwängungen im Versuchskörper ausgleichen konnte. Die Prüfkräfte wurden über ein Keilbackenspannzeug auf den Prüfkörper übertragen, Abb. 3-10. Durch die Bearbeitung der Spannflächen der Prüfkörper konnte weitestgehend ein gleichmäßiger Spanndruck durch die Keilbacken auf den Prüfkörper realisiert werden.

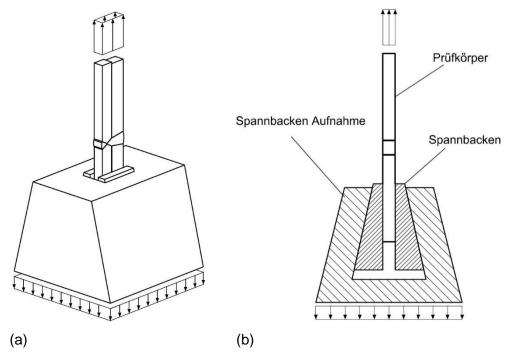


Abb. 3-10: Schematische Darstellung des Spannens der Prüfkörper der Serie 100 im Versuchsaufbau: (a) Isometrie, (b) Querschnitt

Die Mehrteiligkeit (zwei Bleche) der Versuchskörper im Bereich der Krafteinleitung bewirkte, dass sich die Kräfte nicht exakt gleichmäßig im Prüfkörper wie bei einem einteiligen Körper ausbreiteten. Auf den Prüfkörpern waren Dehnmessstreifen angebracht, über die die Dehnung in den Versuchskörpern an mehreren Stellen kontrolliert werden konnte, um so eine weitestgehend gleichmäßige Dehnung im Prüfkörper zu erreichen.

3.2.3 Versuchseinrichtung der Serien 200 – 500

Alle Schwingversuche der restlichen Serien wurden auf einer 1 MN-Universalprüfmaschine Marke *Schenk* an der Materialprüfanstalt (MPA Stuttgart, *Otto-Graf-*Institut) der Universität Stuttgart durchgeführt, Abb. 3-11. Das obere Querhaupt der Prüfmaschine wurde hydraulisch verriegelt und diente als Festlager. Die Prüfkraft wurde über einen Hydraulikzylinder aufgebaut, der die Kraft über das untere Spannzeug in den Prüfkörper einleitete. Die Prüfkräfte wurden über Hydraulikspannbacken auf den Prüfkörper übertragen, Abb. 3-11. Durch die Bearbeitung der Spannflächen der Prüfkörper konnte weitestgehend ein gleichmäßiger Spanndruck durch die Spannbacken auf den Prüfkörper realisiert werden.

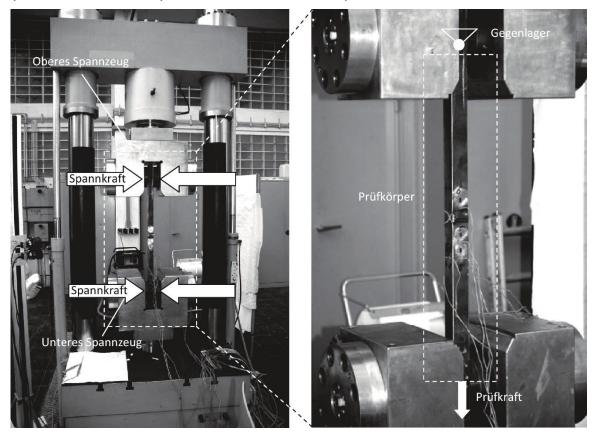


Abb. 3-11: Versuchsaufbau für die Prüfkörper der Serie 200 mit Vergrößerung (rechts)

Auch in diesen Versuchen bewirkte die Mehrteiligkeit (zwei Bleche) der Versuchskörper im Bereich der Krafteinleitung, dass sich die Kräfte nicht exakt gleichmäßig im Prüfkörper wie bei einem einteiligen Körper ausbreiteten. Auch auf den Prüfkörpern der restlichen Versuchsserien waren deshalb Dehnmessstreifen angebracht, über die die Dehnung in den Versuchskörpern an mehreren Stellen kontrolliert werden konnte.

3.2.4 Versagenskriterium

Das Versagenskriterium für die Schwingversuche wurde mit dem Bruch der Prüfkörper festgelegt. Es zeigte sich, dass zwischen dem Anriss und dem Bruch der Prüfkörper Schwingspiele im Umfang von etwa 55 bis 90 % der Gesamtlebensdauer ertragen werden

konnten. Die Ermüdungsrisse, die zum Prüfkörperversagen führten, gingen entweder von der Stirnfugennaht oder vom Nahtübergang des eigentlichen Stumpfstoßes aus.

3.2.5 Versuchsbegleitende Dehnungsmessungen

An ausgewählten Stellen, verteilt über den Querschnitt der Prüfkörper, wurden während des statischen Versuchs und während des sich anschließenden Schwingversuchs permanent die Dehnungen aufgezeichnet. Die Anordnung der Dehnmessstreifen (DMS) ist in Abb. 3-12 repräsentativ für die Versuchsserien 100 – 400 dargestellt.

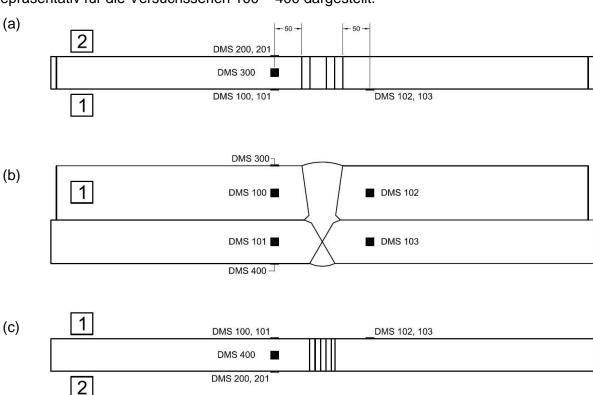


Abb. 3-12: Generelle Anordnung der Dehnmessstreifen in den Serien 100 – 400: (a) Oberseite, (b) Seitenfläche, (c) Unterseite

Auf den einzelnen Prüfkörpern waren 50 mm von den Schweißnahtübergängen entfernt DMS appliziert. Durch die DMS wurden örtlich die im Prüfkörper vorhandenen Dehnungen bestimmt. Die gegenüberliegende Anordnung der DMS ermöglichte es, den Biegeanteil im Prüfkörper zu ermitteln. In Abb. 3-13 (a) ist die Dehnungsverteilung über einem Prüfkörperschnitt dargestellt. Durch die örtlich gemessenen Dehnungen konnten in den DMS Ebenen Q2 und Q5 die Querdehnungsverläufe und in der DMS Ebene L2 der Längsdehnungsverlauf bestimmt werden. Für die anderen dargestellten DMS Ebenen wurden die Dehnungsverläufe mithilfe von Eckpunkten durch Strahlensatzberechnungen bestimmt.

3.2.6 Berechnung der Dehnungsverteilung

Die Ermittlung der Spannungen erfolgte aus den Dehnungsmessungen, die während der Schwingversuche aufgezeichnet wurden. Bei ~ 50 % der bis zum Bruch erfolgten Schwingspiele wurden die gemessenen und rechnerisch abgeleiteten Dehnungen in Spannungen umgerechnet.

Die Dehnungsmessungen erfolgten in einem ausreichend großen Abstand zu den Schweißnähten, so dass im Wesentlichen Nenndehnungen und keine Kerbdehnungen gemessen wurden. Die gemessenen Dehnungen auf den Seiten mit den DMS 100 (Längsschnitt L1 in Abb. 3-13 (a)) und den DMS 200 und 201 (Längsschnitt L3 in Abb. 3-13 (a)) wurden an die Prüfkörperränder linear extrapoliert. Im Inneren des Prüfkörpers wurde zwischen den DMS 300 und 400 linear interpoliert. Die Dehnungsverteilung im Längsschnitt L1 kann somit wie folgt bestimmt werden (Hinweis: Analoges Vorgehen für Längsschnitt L3), Abb. 3-13 (b):

$$\varepsilon_{z}(x) = m \cdot x + n$$
 3-1

$$m = \frac{\varepsilon_{z,100} - \varepsilon_{z,101}}{t_1/2 + t_2/2}$$
 3-2

$$n = \varepsilon_{z,101} - m \cdot (t_1/2) \tag{3-3}$$

Für den Längsschnitt L2 in Abb. 3-13 (a) liefern DMS 300 und DMS 400 die Randdehnungen; dazwischen wird linear interpoliert.

$$\varepsilon_z(x) = m \cdot x + n$$
 3-4

$$m = \frac{\varepsilon_{z,300} - \varepsilon_{z,400}}{t_1 + t_2}$$
 3-5

$$n = \varepsilon_{z,400}$$
 3-6

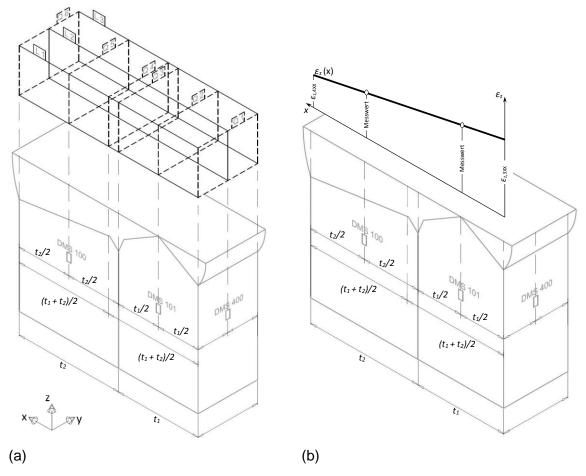


Abb. 3-13: (a) DMS Ebenen im Querschnitt, (b) Extrapolation der Dehnungen für Längsschnitt L1 Im Schweißstoß werden im Folgenden sechs Querschnitte Q1 – Q6 und drei Längsschnitte L1 – L3 unterschieden, Abb. 3-13 (a). Für jeden Querschnitt ergeben sich aus den Längsschnitten somit drei Dehnungswerte.

3.2.7 Berechnung der Nennspannungsschwingbreiten

Durch die Geometrie des Schweißstoßes ergaben sich drei maßgebliche Kerbbereiche, Abb. 3-14.

- Kerbe 1: Schweißnahtübergang der Deck-Lage des unteren Blechs (MAG Schweißnaht PF)
- Kerbe 2: Wurzelpunkt der Stirnfugennaht
- Kerbe 3: Schweißnahtübergang der Deck-Lage des oberen Blechs (UP Schweißnaht PA)

Die Dehnungen ε_z bzw. Dehnungsschwingbreiten $\Delta \varepsilon_z$ im Querschnitt Q1 wurden der Bestimmung der Nennspannung σ_{nom} bzw. Nennspannungsschwingbreite $\Delta \sigma_{\text{nom}}$ des Schweißnahtübergangs (Kerbe 1) an der unteren Lamelle zugrunde gelegt. Für den Schweißnahtübergang (Kerbe 3) an der oberen Lamelle wurde Q6 herangezogen. Für die

Stirnfugennaht (Kerbe 2) wurde Q3 verwendet, Abb. 3-14. Für die Spannungsermittlung wurde ein *E*-Modul von 210.000 N/mm² zugrunde gelegt.

$$\sigma_z = E \cdot \varepsilon_z$$
 bzw. $\Delta \sigma_z = E \cdot \Delta \varepsilon_z$ 3-7

Für die drei Querschnitte Q1, Q3 und Q6 konnten somit durch die Längsschnitte L1 bis L3 jeweils drei Spannungswerte angegeben werden, Abb. 3-14.

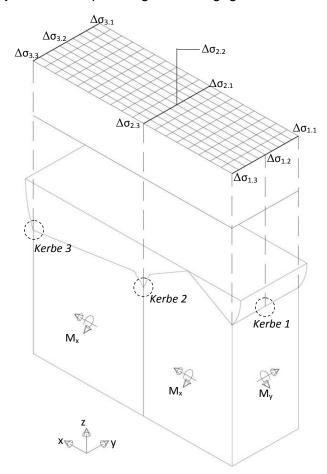


Abb. 3-14: Spannungswerte

Die Nennspannung σ_{nom} wird für jeden Querschnitt wie folgt aus diesen Spannungswerten (unter Annahme einer linearen Spannungsverteilung im Querschnitt) ermittelt:

$$\sigma_{M} = \frac{\sigma_{z,max} - \sigma_{z,min}}{2}$$
 3-8

$$\sigma_{nom} = \sigma_{z,min} + \sigma_M = \frac{\sigma_{z,max} + \sigma_{z,min}}{2}$$
 3-9

 $\sigma_{z,min}$...kleinste Spannung im Querschnitt

 $\sigma_{z,max}$...größte Spannung im Querschnitt

 σ_M ...Biegespannung im Querschnitt infolge M_x

3.2.8 Bestimmung der Biegeanteile

Aufgrund der Dehnungsmessungen an einander gegenüberliegenden Seitenflächen der einzelnen Lamellen, wie z. B. DMS 100 und DMS 200 bzw. DMS 101 und DMS 201, ist es

möglich, die Biegebeanspruchung der einzelnen Lamellen des Prüfkörpers infolge unplanmäßig exzentrischer Krafteinleitung zu bestimmen. Für die Ermittlung der Biegebeanspruchung infolge M_x (vgl. Abb. 3-12 und Abb. 3-14) sind z. B. die DMS 100 und DMS 200 bzw. die DMS 101 und DMS 201 zu betrachten. Für die Biegebeanspruchung M_z sind DMS 300 und DMS 400 miteinander zu vergleichen. Für jede Betrachtungsrichtung gilt:

$$\varepsilon_{nom} = \frac{\varepsilon_{z,max} + \varepsilon_{z,min}}{2}$$
 3-10
$$\varepsilon_{M} = \frac{\varepsilon_{z,max} - \varepsilon_{z,min}}{2}$$
 3-11
Biegeanteil = $\frac{\varepsilon_{M}}{\varepsilon_{nom}}$

 $arepsilon_{nom}$...Dehnung infolge Normalkraft

 ε_M ...Dehnung infolge Biegung

3.3 Versuchsergebnisse der Serie 100

3.3.1 Statische Versuche

Vor den eigentlichen Schwingversuchen wurden die Prüfkörper nach dem Einbau in die Prüfmaschine statisch in mehreren Laststufen belastet. Die Laststufen wurden in 500 kN Schritten gesteigert und nach jeder Laststufe wurde der Prüfkörper entlastet. Um ein Öffnen der Keilspannbacken beim Entlasten zu verhindern, wurde bei der Entlastung eine Kraft von 30 kN gehalten.

In Tabelle 4 sind die maximal aufgebrachten statischen und dynamischen Lasten für die unterschiedlichen Prüfkörper dargestellt.

Tabelle 4. Statische und gynamische Lasten ikini an Pruikorbern der Serie	dynamische Lasten [kN] an Prüfkörpern der Serie 100
---	---

PK	statische Vorbelastung	S	chwingversu	ch
FK	maximale Prüflast	Fo	Fu	ΔF
120	1120	1790	220	1570
121	1781	1780	160	1620
122	2298	1900	170	1730
123	2705	2610	240	2370
124	2404	2370	220	2150

Die Schwingversuche wurden alle im rein elastischen Bereich durchgeführt. Des Weiteren kann aus den Dehnungsmessungen auf eine ggf. auftretende ungewollte Biegung des Prüfkörpers geschlossen werden. Dies erlaubt einen Rückschluss auf die Qualität der Prüfkörpereinspannung (zentrische Lasteinleitung).

Wurden die Abweichungen der Dehnungen von gegenüberliegenden DMS und damit die unplanmäßige Biegung zu groß, wurde der Versuch gestoppt und der Versuchskörper neu eingespannt. Anschließend wurde der statische Versuch wiederholt.

3.3.2 Schwingversuche

Die Schwingversuche wurden im Anschluss an die statischen Versuche durchgeführt. Dafür wurde ein Spannungsverhältnis von $R \approx 0,1$ gewählt. Auf jedem Spannungsschwingbreitenniveau wurden mindestens drei Versuche der Serie 100 geprüft. Über die gesamte Versuchsdauer wurden die Dehnungen der Versuchskörper mithilfe der DMS gemessen. Aus den maximalen und minimalen Dehnungswerten ε_o und ε_u wurde die Dehnungsschwingbreite $\Delta\varepsilon$ berechnet. In Abb. 3-15 sind beispielhaft die für den Prüfkörper 122 gemessenen Dehnungsschwingbreiten in Abhängigkeit der Schwingspielzahl dargestellt. Der Steifigkeitsverlust gegen Endes des Versuchs steht im Zusammenhang mit dem sich ausbreitendem Ermüdungsriss.

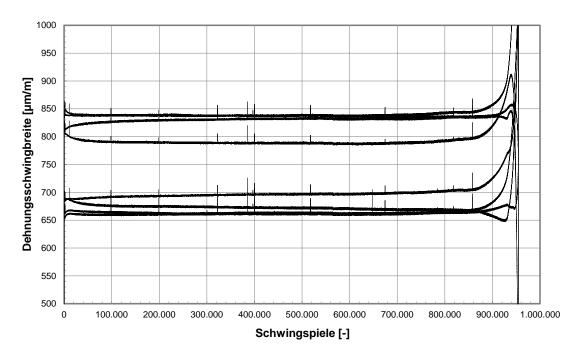


Abb. 3-15: DMS Dehnungsschwingbreiten von Prüfkörper 122

Die Prüfkörper wurden auf Grund der kleinen Prüffrequenzen ($f=2\,\mathrm{Hz}$) in einem unregelmäßigen Zyklus visuell geprüft. In Tabelle 5 sind die Schwingspiele aufgetragen, die bis zum Bruch auf den Prüfkörper eingewirkt haben. Es zeigt sich, dass in dieser Versuchsreihe nur die Stirnfugennaht die maßgebliche Kerbe darstellt. Im Vorgängerprojekt [21] konnte im Gegensatz dazu beobachtet werden, dass neben der Stirnfugennaht auch ein

Rissausgang an den Schweißnahtübergängen erfolgen kann. In Abb. 3-16 ist ein Beispiel für ein Rissbild (hier von Prüfkörper 124), ausgehend von der Stirnfugennaht, abgebildet.

Tabelle 5: Ertragene Schwingspiele bis zum Bruch der Serie 100
--

Prüfkörper	Schwingspiele bis zum Bruch des Prüfkörpers	Rissausgangsort
120	836.230	Stirnfugennaht (Kerbe 2)
121*	2.223.975	
121	97.075	Stirnfugennaht (Kerbe 2)
122	954.726	Stirnfugennaht (Kerbe 2)
123	292.475	Stirnfugennaht (Kerbe 2)
124	379.075	Stirnfugennaht (Kerbe 2)

Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

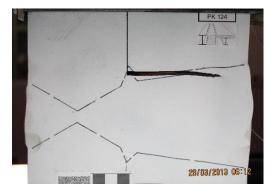


Abb. 3-16: Rissbild von Prüfkörper 124 (links: Vorderseite, rechts: Rückseite)

3.3.3 Dehnungsverteilung

Unter der Annahme einer linearen Dehnungsverteilung konnten die Dehnungen mithilfe der folgenden Gleichungen bestimmt werden. Beispielhaft soll die Dehnungsberechnung am Prüfkörper 122 der Versuchsserie 100 betrachtet werden. Es ergibt sich somit für Längsschnitt L1:

$$m = \frac{\varepsilon_{z,100} - \varepsilon_{z,101}}{50 + 40 \text{ mm}} = \frac{786 - 670}{50 + 40 \text{ mm}} = 1,2889$$
3-13

$$n = \varepsilon_{z,101} - m \cdot (40 \text{ mm}) = 670 - 1,2889 \cdot 40 = 618$$
 3-14

und für Längsschnitt L3:

$$m = \frac{\varepsilon_{z,200} - \varepsilon_{z,201}}{50 + 40 \text{ mm}} = \frac{831 - 696}{50 + 40 \text{ mm}} = 1,5$$

$$n = \varepsilon_{z,201} - m \cdot (40 \text{ mm}) = 696 - 1.5 \cdot 40 = 636$$
 3-16

und für Längsschnitt L2:

$$m = \frac{\varepsilon_{z,300} - \varepsilon_{z,400}}{180 \text{ mm}} = \frac{837 - 660}{180 \text{ mm}} = 0,9833$$

$$n = \varepsilon_{z,400} = 660$$
 3-18

3.3.4 Nennspannungsschwingbreiten

Eine ausführliche Darstellung der Nennspannungsberechnung für den Prüfkörper 122 ist in Tabelle 6 enthalten. Die Nennspannungen der einzelnen Kerben für alle Prüfkörper der Serie 100 sind in Tabelle 7 zusammengestellt.

Tabelle 6: Ausführliche Nennspannungsberechnung für Prüfkörper 122

Quer- schnitte		Dehnungen Δε in den Längsschnitten* [μm/m]		Spa	ugehör nnunge [N/mm [:]	en Δσ	Aus	swertı	ıng
	L1	L2	L3	L1	L2	L3	σ_{min}	σ_{max}	σ_{nom}
Q1 $(x = 0)$	1,2889 · 0 + 618 = 618	$0.9833 \cdot 0 + 660$ = 660	$1,50 \cdot 0 + 636$ $= 636$	130	139	134	130	139	135
Q3 $(x = 80)$	1,2889 · 80 + 618 = 721	0,9833 · 80 + 660 = 739	1,50 · 80 + 636 = 756	151	155	159	151	159	155
Q6 $(x = 180)$	1,2889 · 180 + 618 = 850	0,9833 · 180 + 660 = 837	1,50 · 180 + 636 = 906	179	176	190	176	190	183
* Koeffizienten <i>m</i> und <i>n</i> aus Gl. 3-13 bis Gl. 3-18									

Tabelle 7: Nennspannungsschwingbreiten an den maßgebenden Kerben in Serie 100

	Kerbe 1	Kerbe 2	Kerbe 3
Prüfkörper	$\Delta\sigma_{ m nom,1}$	$\Delta\sigma_{nom,2}$	$\Delta\sigma_{ m nom,3}$
	[N/mm²]	[N/mm²]	[N/mm²]
120	145	158	175
121*	127	147	174
121	175	200	230
122	135	155	183
123	194	214	241
124	165	194	231

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

3.3.5 Biegeanteile - Serie 100

Wie in Kapitel 3.2.8 erläutert, errechnen sich die Biegeanteile aus dem Vergleich der Dehnungen, die mit Hilfe der sich gegenüberliegenden DMS gemessen wurden. Tabelle 8 gibt einen Überblick über die Biegeanteile der Versuchsserie 100. Die berechneten

Spannungsanteile aus der Biegung M_x liegen unter 4,5 % bezogen auf die Gesamtspannung. Die Spannungsanteile für Biegespannung aus M_y betragen maximal 12,2 %.

Tabelle 8:	Biegeanteile in	der Serie	100,	vgl. At	b. 3-14

	Anteil der Bi	Anteil der Biegung	
Prüfkörper	Einzelblech 80 mm	Einzelblech 100 mm	M _y [%] Blechpaket
120	3,0	2,5	9,5
121	3,0	2,8	11,9
121*	3,4	3,2	10,2
122	1,9	2,8	11,8
123	4,1	2,7	9,4
124	4,0	3,7	12,2

3.3.6 Auswertung der Ergebnisse der Serie 100

Ausgewertet wurden die Versuche mit den berechneten Nennspannungen an der jeweils maßgebenden Kerbe in Abhängigkeit der Schwingspiele bis zum Prüfkörperbruch. In Abb. 3-17 ist die Auswertung mit der Nennspannung am Versagensort, der Tabelle 5 entnommen werden kann, und der für DIN EN 1993-1-9 festgelegten Steigung der *Wöhler*linie m=3 dargestellt. Die Versuchsergebnisse wurden zusammen mit den Werten der Serie 100 aus dem Vorgängerprojekt [21] ausgewertet.

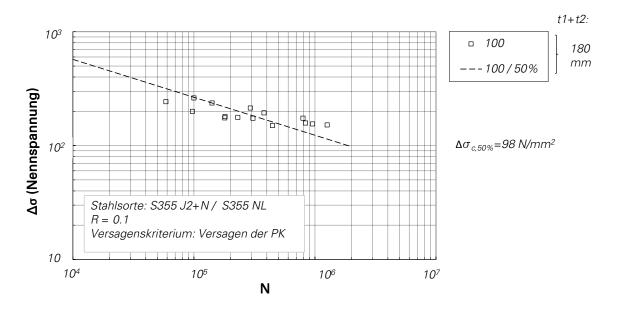


Abb. 3-17: 50 % Wöhlerlinie der Serie 100

3.4 Versuchsergebnisse der Serie 200

3.4.1 Statische Versuche

Vor den eigentlichen Schwingversuchen wurden auch die Prüfkörper der Serie 200 (Gesamtblechdicke von 45 mm) nach dem Einbau in die Prüfmaschine statisch stufenweise belastet. Die Laststufen wurden je Prüfkörper in unterschiedlich großen Schritten gesteigert und nach jeder Laststufe wieder entlastet. Die Positionen der DMS sind in Abb. 3-12 dargestellt. Die Schwingversuche wurden alle im rein elastischen Bereich durchgeführt.

Ferner erlaubten die umfangreichen Dehnungsmessungen auch bei der Serie 200 die Ermittlung unbeabsichtigter Biegung des Prüfkörpers während der Versuche. Damit war ein unmittelbarer Rückschluss auf die Qualität der Prüfkörpereinspannung möglich. Bei einer Differenz der Dehnungen auf gegenüberliegenden Seitenflächen von mehr als 20 % wurde der Versuch gestoppt und der Versuchskörper neu eingespannt. Anschließend wurde der statische Versuch wiederholt.

In Tabelle 9 sind die maximal aufgebrachten statischen und dynamischen Lasten für die unterschiedlichen Prüfkörper dargestellt.

PK	statische Vorbelastung	S	chwingversu	ch
	maximale Prüflast	Fo	F _u	ΔF
221	247	245	20	225
223	297	294	25	269
224	295	295	27	268

Tabelle 9: Statische und dynamische Lasten [kN] an Prüfkörpern der Serie 200

3.4.2 Schwingversuche

Die Durchführung der Schwingversuche ist vergleichbar mit den Schwingversuchen der Serie 100. Die Serie 200 wurde ebenfalls mit einem Spannungsschwingverhältnis von $R\approx 0.1$ durchgeführt. Auch hier wurde die Oberlast so gewählt, dass sie unterhalb der maximal im statischen Versuch angefahrenen Last lag. Pro Spannungsniveau wurden mindestens zwei Versuche durchgeführt.

Über die gesamte Versuchsdauer wurden die Dehnungen an den DMS dauerhaft aufgezeichnet. Aus den maximalen und minimalen Dehnungswerten wurden die Dehnungsschwingbreiten berechnet. In Abb. 3-18 sind beispielhaft die für den Prüfkörper 220 gemessenen Dehnungsschwingbreiten in Abhängigkeit von der Schwingspielzahl dargestellt.



Abb. 3-18: Dehnungsschwingbreiten von Prüfkörper 220

Auch die Prüfkörper der Serie 200 wurden auf Grund der kleinen Prüffrequenzen $(f=5-8\,\mathrm{Hz})$ in einem unregelmäßigen Zyklus visuell geprüft. In Tabelle 10 sind die Schwingspiele aufgetragen, die bis zum Bruch auf den Prüfkörper eingewirkt haben. Es konnte beobachtet werden, dass bei der Serie 200 die Stirnfugennaht keinen maßgebenden Rissausgangspunkt darstellte. Für das Versagen war die Rissinitiierung an der Kerbe 1 maßgebend. Dieses Versagensmuster wurde auch an den Prüfkörpern der Serie 200 [21] aus dem Vorgängerprojekt beobachtet.

In Abb. 3-19 ist ein Beispiel für ein Rissbild (hier von Prüfkörper 220), ausgehend vom Schweißnahtübergang (Kerbe 1), abgebildet.

Tabelle 10: Ertragene Schwingspiele bis zum Bruch der Serie 200

Prüfkörper	Schwingspiele bis zum Bruch des Prüfkörpers	Rissausgangsort
220	631.700	Schweißnahtübergang (Kerbe 1)
221	1.461.225	Schweißnahtübergang (Kerbe 1)
222	1.359.610	Schweißnahtübergang (Kerbe 1)
223	694.250	Schweißnahtübergang (Kerbe 1)
224	580.425	Schweißnahtübergang (Kerbe 1)

Abb. 3-19: Rissbild von Prüfkörper 220

3.4.3 Nennspannungsschwingbreiten

Die Nennspannungen der einzelnen Kerben für alle Prüfkörper der Serie 200 sind in Tabelle 11 zusammengestellt.

Tabelle 11: Nennspannungsschwingbreiten an den maßgebenden Kerben in Serie 200

	Kerbe 1	Kerbe 2	Kerbe 3
Prüfkörper	$\Delta\sigma_{ m nom,1}$	$\Delta\sigma_{nom,2}$	$\Delta\sigma_{ ext{nom,3}}$
	[N/mm²]	[N/mm²]	[N/mm²]
220	144	142	140
221	124	119	112
222*	-	-	-
223	143	141	138
224	164	156	147

^{*} Aufgrund eines technischen Problems konnten die Daten zur Last- Zeit Historie von PK 222 nicht wiederhergestellt werden

3.4.4 Biegeanteile - Serie 200

Wie in Kapitel 3.2.8 erläutert, errechnen sich die Biegeanteile aus dem Vergleich der Dehnungen, die mit Hilfe der sich gegenüberliegenden DMS gemessen wurden. Tabelle 12 gibt einen Überblick über die Biegeanteile der Versuchsserie 200. Die berechneten Spannungsanteile aus der Biegung M_x liegen unter 5,2 % bezogen auf die Gesamtspannung. Die Spannungsanteile für Biegespannung aus M_y betragen maximal 17 %.

	Anteil der Bi	Anteil der Biegung	
Prüfkörper	Fig. allela ale 00 mage	Figure Help als OF years	<i>M_y</i> [%]
	Einzelblech 20 mm	Einzelblech 25 mm	Blechpaket
220	3,5	5,2	12,7
221	0,7	1,6	16,9
222*	-	-	-
223	0,6	0,1	12,4
224	2,5	2,4	15,5

Tabelle 12: Biegeanteile in der Serie 200, vgl. Abb. 3-14

3.4.5 Auswertung der Ergebnisse der Serie 200

Ausgewertet wurden die Versuche mit den berechneten Nennspannungen an der jeweils maßgebenden Kerbe in Abhängigkeit der Schwingspiele bis zum Prüfkörperbruch. In Abb. 3-20 ist die Auswertung mit der Nennspannung für den Versagensort (siehe Tabelle 10) und mit der für DIN EN 1993-1-9 festgelegten Steigung der *Wöhler*linie m=3 dargestellt. Zusätzlich wurden die Versuchsergebnisse zusammen mit den Werten der Serie 200 aus dem Vorgängerprojekt [21] ausgewertet.

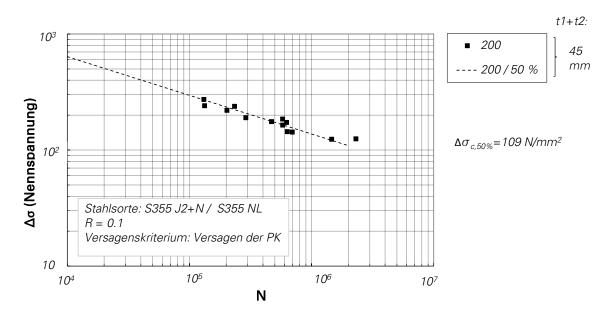


Abb. 3-20: 50 % Wöhlerlinie der Serie 200

^{*} Aufgrund eines technischen Problems konnten die Daten zur Last- Zeit Historie von PK 222 nicht wiederhergestellt werden

3.5 Versuchsergebnisse der Serie 300

3.5.1 Statische Versuche

Vor den eigentlichen Schwingversuchen wurden auch die Prüfkörper der Serie 300 (Gesamtblechdicke von 90 mm) nach dem Einbau in die Prüfmaschine statisch stufenweise belastet. Die Laststufen wurden je Prüfkörper in unterschiedlich großen Schritten gesteigert und nach jeder Laststufe wieder entlastet. Die Positionen der DMS sind in Abb. 3-12 dargestellt. Die Schwingversuche wurden alle im rein elastischen Bereich durchgeführt.

Ferner erlaubten die umfangreichen Dehnungsmessungen auch bei der Serie 200 die Ermittlung unbeabsichtigter Biegung des Prüfkörpers während der Versuche. Damit war ein unmittelbarer Rückschluss auf die Qualität der Prüfkörpereinspannung möglich. Bei einer Differenz der Dehnungen auf gegenüberliegenden Seitenflächen von mehr als 20 % wurde der Versuch gestoppt und der Versuchskörper neu eingespannt. Anschließend wurde der statische Versuch wiederholt.

In Tabelle 13 sind die maximal aufgebrachten statischen und dynamischen Lasten für die unterschiedlichen Prüfkörper dargestellt.

PK	statische Vorbelastung	S	chwingversu	ch
	maximale Prüflast	Fo	Fu	ΔF
300	795	786	72	714
301	796	787	72	715
302	797	785	70	715
303	596	590	55	535
304	700	690	60	630
305	597	690	55	635
306	795	790	70	720
307	796	790	70	720

Tabelle 13: Statische und dynamische Lasten [kN] an Prüfkörpern der Serie 300

3.5.2 Schwingversuche

Auch Serie 300 wies ein Spannungsschwingverhältnis von $R \approx 0.1$ auf. Die Oberlast wurde wieder so gewählt, dass sie unterhalb der maximal im statischen Versuch angefahrenen Last lag. Über die gesamte Versuchsdauer wurden die Dehnungen an den DMS dauerhaft aufgezeichnet. Um das Datenvolumen zu reduzieren, wurde nur jedes 25. Schwingspiel aufgenommen. Aus den maximalen und minimalen Dehnungswerten wurden die Dehnungsschwingbreiten berechnet. In Abb. 3-18 sind beispielhaft die für den Prüfkörper 300 gemessenen Dehnungsschwingbreiten in Abhängigkeit von der Schwingspielzahl dargestellt.

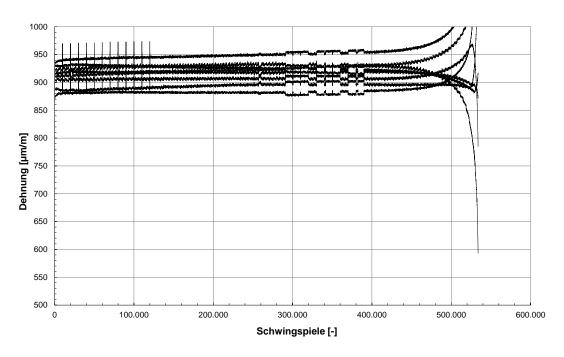


Abb. 3-21: Dehnungsschwingbreiten von Prüfkörper 300

Auf Grund der kleinen Prüffrequenzen ($f = 5 - 8 \, \mathrm{Hz}$) wurden auch die Versuchskörper der Serie 300 in einem unregelmäßigen Zyklus visuell geprüft. In Tabelle 14 sind die Schwingspiele aufgetragen, die bis zum Bruch auf den Prüfkörper eingewirkt haben.

Es zeigt sich, dass wie schon im Vorgängerprojekt [21], sowohl Stirnfugennaht als auch Schweißnahtübergang die maßgeblichen Kerben für den Rissausgang darstellen.

Zum Teil konnte ein gleichzeitiger Anriss an den beiden Kerben 1 und 3 (Stirnfugennaht und Schweißnahtübergang), beobachtet werden. In Abb. 3-22 ist jeweils ein Beispiel für die zwei registrierten Versagensmodi (hier von Prüfkörper 300 und 301) abgebildet.

Tabelle 14: Ertragene Schwingspiele bis zum Bruch der Serie 300

Prüfkörper	Schwingspiele bis zum Bruch des Prüfkörpers	Rissausgangsort
300	533.875	Stirnfugennaht (Kerbe 2)
301	665.125	Schweißnahtübergang (Kerbe 3)
302	610.075	Schweißnahtübergang (Kerbe 3)
303	1.305.600	Schweißnahtübergang (Kerbe 3)
304	1.105.200	Schweißnahtübergang (Kerbe 3)

305	1.362.000	Schweißnahtübergang (Kerbe 3) und Stirnfugennaht
		(Kerbe 2)
306*	2.267.250	-
306	381.850	Stirnfugennaht (Kerbe 2)
307*	3.412.375	-
307	281.375	Stirnfugennaht (Kerbe 2)
		Schweißnahtübergang
308†	1.190.794	(Kerbe 3) und Stirnfugennaht
		(Kerbe 2)
309†	825.749	Schweißnahtübergang
303	020.743	(Kerbe 3)

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

[†] Aufgrund eines technischen Problems konnten diese Daten nicht wiederhergestellt werden und wurden deshalb mithilfe von berechneten Nennspannungen am Gesamtquerschnitt ermittelt

Abb. 3-22: Rissbilder der Prüfkörper 300 (links) und 301 (rechts) mit den zwei beobachteten Versagensmodi

3.5.3 Nennspannungsschwingbreiten

Die Nennspannungen der einzelnen Kerben für alle Prüfkörper der Serie 300 sind in Tabelle 15 zusammengestellt.

	Kerbe 1	Kerbe 2	Kerbe 3
Prüfkörper	$\Delta\sigma_{nom,1}$	$\Delta\sigma_{nom,2}$	$\Delta\sigma_{nom,3}$
	[N/mm²]	[N/mm²]	[N/mm²]
300	197	194	189
301	201	195	186
302	196	196	196
303	142	146	148
304	169	171	173
305	139	145	152
306*	122	122	121
306	192	195	195
307*	130	132	131
307	191	195	197
308†	150	150	150
309†	175	175	175

Tabelle 15: Nennspannungsschwingbreiten an den maßgebenden Kerben in Serie 300

3.5.4 Biegeanteile – Serie 300

Wie in Kapitel 3.2.8 erläutert, errechnen sich die Biegeanteile aus dem Vergleich der Dehnungen, die mit Hilfe der sich gegenüberliegenden DMS gemessen wurden. Tabelle 16 gibt einen Überblick über die Biegeanteile der Versuchsserie 300. Die berechneten Spannungsanteile für die Biegung M_x liegen bei maximal 7,4 % bezogen auf die Gesamtspannung. Die Spannungsanteile für Biegespannung aus M_y betragen maximal 6,5 %.

	Anteil der Bi	Anteil der Biegung	
Prüfkörper	Einzelblech 45 mm Einzelk	Einzelblech 40 mm	<i>M_y</i> [%]
	Ellizoidicon 40 mm	LINZCIDICON 40 IIIIII	Blechpaket
300	0,8	0,3	3,8
301	6,5	7,4	1,1
302	0,9	2,8	3,7
303	2,9	3,1	5,1

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

[†] Aufgrund eines technischen Problems konnten diese Daten nicht wiederhergestellt werden und wurden deshalb mithilfe von berechneten Nennspannungen am Gesamtquerschnitt ermittelt

304	0,8	2,2	4,1
305	1,9	1,8	5,2
306*	0,9	0,6	5,0
306	1,6	0,8	5,8
307*	3,0	2,2	6,3
307	1,8	1,8	6,5
308†	-	-	-
309†	-	-	-

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

3.5.5 Auswertung der Ergebnisse der Serie 300

Ausgewertet wurden die Versuche mit den berechneten Nennspannungen an der jeweils maßgebenden Kerbe in Abhängigkeit der Schwingspiele bis zum Prüfkörperbruch. In Abb. 3-23 ist die Auswertung mit der Nennspannung am Versagensort, der Tabelle 14 entnommen werden kann, und der für DIN EN 1993-1-9 festgelegten Steigung der *Wöhler*linie m=3 dargestellt.

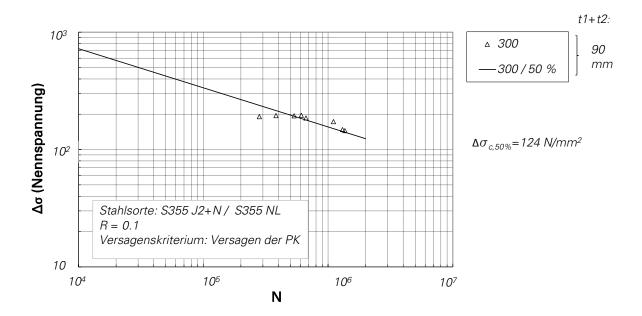


Abb. 3-23: 50 % Wöhlerlinie der Serie 300

[†] Aufgrund eines technischen Problems konnten diese Daten nicht wiederhergestellt werden

3.6 Versuchsergebnisse der Serie 400

3.6.1 Statische Versuche

Die Prüfkörper der Versuchsserie 400 besitzen eine Gesamtblechdicke von 75 mm. In einem ersten Schritt wurden auch die Prüfkörper der Serie 400, nach dem Einbau in die Prüfmaschine statisch in mehreren Laststufen belastet und wieder entlastet.

In Tabelle 17 sind die maximal aufgebrachten statischen und dynamischen Lasten für die unterschiedlichen Prüfkörper dargestellt.

PK	statische Vorbelastung	Schwingversuch		ch
	maximale Prüflast	Fo	Fu	ΔF
400	696	655	60	595
401	795	787	70	717
402	497	491	45	446
403	447	426	83	343
404	810	804	72	732
405	656	656	60	596
406	447	426	38	394
407	496	491	44	447
408	497	492	45	447
409	696,6	656	60	596

Wie in den Serien zuvor, erlaubten die umfangreichen Dehnungsmessungen auch bei der Serie 400 die Ermittlung unbeabsichtigter Biegung des Prüfkörpers während der Versuche. Damit war ein unmittelbarer Rückschluss auf die Qualität der Prüfkörpereinspannung möglich. Bei einer Differenz der Dehnungen auf gegenüberliegenden Seitenflächen von mehr als 20 % wurde der Versuch gestoppt und der Versuchskörper neu eingespannt. Nach einem unter solchen Umständen erfolgten neuen Einspannen wurde der statische Versuch wiederholt.

3.6.2 Schwingversuche

Wie schon in den Serien zuvor wurde für die Serie 400 ein Spannungsschwingverhältnis von $R \approx 0.1$ gewählt. Über die gesamte Versuchsdauer wurden die Dehnungen an den DMS dauerhaft aufgezeichnet. Aus den maximalen und minimalen Dehnungswerten wurden die Dehnungsschwingbreiten berechnet. In Abb. 3-24 sind beispielhaft die für den Prüfkörper 404 gemessenen Dehnungsschwingbreiten in Abhängigkeit von der Schwingspielzahl dargestellt.

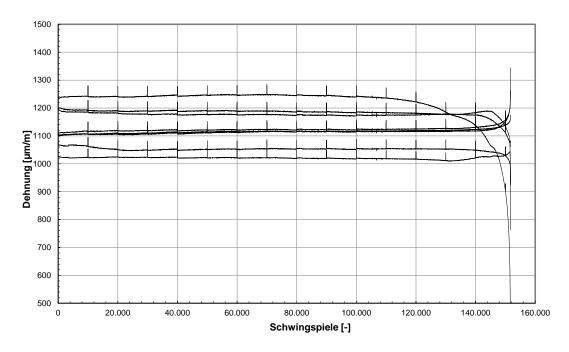


Abb. 3-24: Dehnungsschwingbreiten von Prüfkörper 404

Auf Grund der kleinen Prüffrequenzen ($f=7-8,5\,\mathrm{Hz}$) wurden auch die Versuchskörper der Serie 400 in einem unregelmäßigen Zyklus visuell geprüft. In Tabelle 18 sind die Schwingspiele aufgetragen, die bis zum Bruch auf den Prüfkörper eingewirkt haben. Als maßgebende Stelle stellte sich der Schweißnahtübergang auf der UP geschweißten Seite (dünnere Lamelle) heraus. In Abb. 3-25 rechts ist ein Beispiel für das beobachtete Versagensbild (hier von Prüfkörper 404) und links eine Übersicht aller gerissenen Prüfkörper der Serie 400 abgebildet.

Tabelle 18: Ertragene Schwingspiele bis zum Bruch der Serie 400

Prüfkörper	Schwingspiele bis zum Bruch des Prüfkörpers	Rissausgangsort
400	339.425	Schweißnahtübergang (Kerbe 3)
401†	-	-
401	283.750	Schweißnahtübergang (Kerbe 3)
402	624.525	Schweißnahtübergang (Kerbe 3)
403	972.500	Schweißnahtübergang (Kerbe 3)
404*	1.712.875	-

404	151.725	Schweißnahtübergang (Kerbe 3)
405	270.700	Schweißnahtübergang (Kerbe 3)
406	1.606.875	Schweißnahtübergang (Kerbe 3)
407	1.090.500	Schweißnahtübergang (Kerbe 3)
408	1.462.910	Schweißnahtübergang (Kerbe 3)
409	457.400	Schweißnahtübergang (Kerbe 3)

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

[†] Versuch aufgrund von Maschinen – Aussetzer abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

Abb. 3-25: Aufreihung aller Prüfkörper der Serie 400 im gerissenen Zustand (links) und Beispiel eines Rissbildes (rechts), hier: Prüfkörper 404

3.6.3 Nennspannungsschwingbreiten

Die Nennspannungen der einzelnen Kerben für alle Prüfkörper der Serie 400 sind in Tabelle 19 zusammengestellt.

Tabelle 19: Nennspannungsschwingbreiten an den maßgebenden Kerben in Serie 400

Kerbe 1	Kerbe 2	Kerbe 3
$\Delta\sigma_{nom,1}$	$\Delta\sigma_{nom,2}$	$\Delta\sigma_{nom,3}$
[N/mm²]	[N/mm²]	[N/mm²]
184	196	203
-	-	-
224	235	243
138	146	150
111	132	143
97	110	117
220	244	257
200	198	194
126	126	126
137	147	153
148	147	147
200	200	200
	Δσ _{nom,1} [N/mm²] 184 - 224 138 111 97 220 200 126 137 148	Δσ _{nom,1} Δσ _{nom,2} [N/mm²] [N/mm²] 184 196 - - 224 235 138 146 111 132 97 110 220 244 200 198 126 126 137 147 148 147

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

• Versuch aufgrund von Maschinen – Aussetzer abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau getestet † Aufgrund eines technischen Problems konnten diese Daten nicht wiederhergestellt werden und wurden deshalb mithilfe von berechneten Nennspannungen am Gesamtquerschnitt ermittelt

3.6.4 Biegeanteile – Serie 400

Wie in Kapitel 3.2.8 erläutert, errechnen sich die Biegeanteile aus dem Vergleich der Dehnungen, die mit Hilfe der sich gegenüberliegenden DMS gemessen wurden. Tabelle 20 gibt einen Überblick über die Biegeanteile der Versuchsserie 400. Die berechneten Anteile für die Biegung M_x liegen unter 5,1 % bezogen auf die Gesamtspannung. Die Spannungsanteile für Biegespannung aus M_y betragen maximal 11,3 %.

	Anteil der Biegung M_x [%]		Anteil der Biegung	
Prüfkörper	Einzelblech 25 mm	Einzelblech 50 mm	M _y [%] Blechpaket	
400	0,5	2,0	10,9	
401†	-	-	-	
401	0,6	1,7	10,5	
402	0,5	0,6	9,6	
403	1,5	0,1	11,3	
404*	1,2	0,6	9,8	
404	0,5	0,3	10,0	
405	1,3	5,1	1,9	
406	1,1	1,1	3,3	
407	0,7	1,9	9,3	
408	1,0	0,6	3,4	
409●	-	-	-	

Tabelle 20: Biegeanteile in der Serie 400, vgl. Abb. 3-14

- † Versuch aufgrund von Maschinen Aussetzer abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau getestet
- Aufgrund eines technischen Problems konnten diese Daten nicht wiederhergestellt werden

3.6.5 Auswertung der Ergebnisse der Serie 400

Ausgewertet wurden die Versuche mit den berechneten Nennspannungen an der jeweils maßgebenden Kerbe in Abhängigkeit der Schwingspiele bis zum Prüfkörperbruch. In Fällen, in denen die Daten wegen technischen Problemen nicht wiederhergestellt werden konnten, wurden die Nennspannungsschwingbreiten aus den Lasten im Gesamtquerschnitt berechnet. In Abb. 3-26 ist die Auswertung mit der Nennspannung am Versagensort, der Tabelle 18 entnommen werden kann, und der für DIN EN 1993-1-9 festgelegten Steigung der $W\"{o}hler$ linie m=3 dargestellt.

^{*} Versuch abgebrochen: Es konnte kein Anriss des Prüfkörpers erreicht werden und wurde aufgrund dessen auf höherem Lastniveau erneut getestet

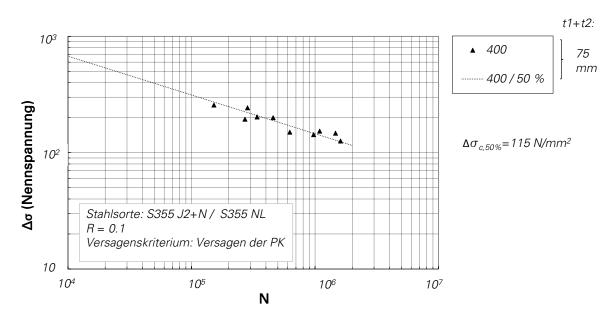


Abb. 3-26: 50 % Wöhlerlinie der Serie 400

4 Experimentelle Untersuchungen zum Treppenstoß

4.1 Übersicht

Zu dieser Art des Stumpfstoßes gibt es bisher nur wenige Untersuchungen. Da der Baustellenstoß in diesem Fall über drei Schweißnähte ausgeführt wird und damit nur noch die Mehrteiligkeit, also mehrere übereinander liegende Lamellen, mit dem Lamellenstoß gemeinsam hat, soll der Treppenstoß als Gegenstand dieses Kapitels genauer untersucht werden, siehe Abb. 4-1. Die Schwingversuchsserie "Treppenstoß" ersetzt die im Forschungsantrag geplante Schwingversuchsserie zur Nachbehandlung. Die Änderung des Versuchsprogrammes wurde auf der ersten Sitzung durch den PbA beschlossen.

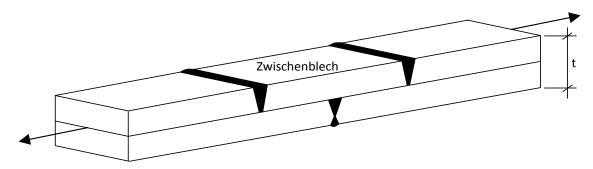


Abb. 4-1: Übersicht des Konstruktionsdetails des Treppenstoßes

4.2 Begriffsklärung

Der Treppenstoß besteht auch aus zwei Blechpaketen, die aber nicht wie beim Lamellenstoß in einer Schweißnaht sondern über ein Zwischenblech in drei Schweißnähten gestoßen werden, Abb. 4-1. Durch das Mittelblech entfällt die Stirnfugennaht, wie sie beim Lamellenstoß vorkommt. Es entstehen dadurch aber drei zusätzliche Kerben als mögliche Rissausgangsorte, Abb. 4-7. Aufgrund der versetzten, treppenartigen Anordnung der Schweißnähte entstand die Bezeichnung *Treppenstoß*. Es soll untersucht werden, ob durch die Aufteilung der großen Schweißnaht des Lamellenstoßes in drei kleinere Schweißnähte der Einfluss des Maßstabeffekts abnimmt. Wie beim Lamellenstoß erfolgte die Schweißung der Stumpfstöße in den Versuchen wie in der Praxis in mehreren Lagen.

4.3 Stand der Normung und Forschung

Da sich die Schweißnaht in drei unterschiedliche Schweißnähte aufteilt, kann jede Naht individuell betrachtet werden. Die Ausführung der Schweißnähte erfolgt dann nach den aktuell gängigen Normen [7]. Die Nähte in der oberen Gurtplatte bzw. Lamelle werden als Steilflankennähte ausgeführt, bei der die untere Gurtplatte als Badsicherung dient. Die mittlere Schweißnaht in der unteren Gurtplatte stellt eine X-Naht dar. Weitere Literatur und

Forschungsarbeiten zur Zusammenwirkung der einzelnen Nähte und zur Untersuchung der Ermüdungsfestigkeit des Treppenstoßes ist der Forschungsstelle jedoch nicht bekannt.

4.4 Ziel der Versuche

Ziel der durchgeführten Versuche, hier Versuchsserie 500, war es die Eigenschaften des Konstruktionsdetails Treppenstoß im Hinblick auf Ermüdung und Größeneinfluss abschätzen zu können. Wie bei dem Lamellenstoß wurde die Ermüdungsfestigkeit mithilfe von Schwingversuchen bestimmt. Der hier untersuchte Treppenstoß besteht aus einem Blechpakte von zwei je 40 mm dicken Blechen.

Aufgrund von Blechdicken $t > 25 \, \mathrm{mm}$, ist auch bei der Versuchsserie 500 nach DIN EN 1993-1-9 ein Maßstabseffekt zu berücksichtigen. Es sollte geklärt werden, ob durch die Aufteilung der großen Stumpfnaht eine Verbesserung im Hinblick auf die Ermüdungsfestigkeit erzielt werden kann.

4.5 Beschreibung der Prüfkörper

4.5.1 Einleitung

Um auch beim Treppenstoß repräsentative Prüfkörper testen zu können, war wieder die Fertigung eines großformatigen, bauteilähnlichen Musterstücks erforderlich. Das Musterstück wurde anschließend in die einzelnen Prüfkörper zerlegt. Um größtmögliche Realitätsnähe der Versuchsergebnisse sicherzustellen, wurde das Musterstück unter erheblichem Einsatz von Arbeitszeit und Material unter Baustellenbedingungen gefertigt. Die Herstellung und Lieferung der Prüfkörper erfolgte in Form einer Spende durch das Unternehmen: *Stahlbau Dessau*.

4.5.2 Grundmaterial und Schweißnahtvorbereitung der Musterstücke

Das Musterstück der Serie 500 bestand aus insgesamt fünf 40 mm dicken Einzelblechen, sodass durch das Fügen ein Blechpaket mit einer Dicke von 80 mm entstand, Abb. 4-2. Als Grundmaterialien wurde zum einen ein Stahl der Güte S355NL und zum anderen der Güte S355J2+N verwendet. Die chemischen Kennwerte der einzelnen Bleche sind aus den zugehörigen Abnahmeprüfzeugnissen entnommen, siehe Anhang 11.1. Die Materialkennwerte der einzelnen Grundmaterialen können ebenfalls den zugehörigen Abnahmeprüfzeugnissen entnommen werden, Anhang 11.1.

Die Bleche wurden durch Brennschneiden auf Länge zugeschnitten. Die Schweißnahtvorbereitung an den Blechkanten erfolgte ebenfalls durch Brennscheiden. Die Musterkörper wurden aus Blechen hergestellt, die 1.000 mm lang waren. Aus diesen wurden nach dem Schweißen des Lamellenstoßes die einzelnen Prüfkörper durch Sägen herausgeschnitten.

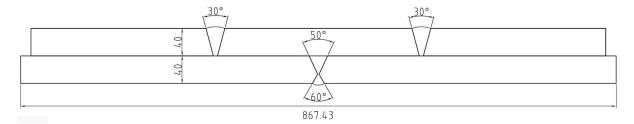


Abb. 4-2: Beispiel für einen Prüfkörper der Serie 500

4.5.3 Schweißen der Musterstücke

Die Schweißarbeiten wurden in Zwangslage durchgeführt. Die Schweißreihenfolge und der Schweißlagenaufbau entsprachen einer typischen Baustellenschweißung.

Im ersten Schritt wurde aus den Einzelblechen das Blechpaket zusammengesetzt. Die Bleche wurden übereinander gelegt und zueinander ausgerichtet. Durch Schraubzwingen in ihrer Lage fixiert, konnten die oberen Bleche, die umlaufend 10 mm kleiner ausgeführt wurden, mittels Kehlnähte verschweißt werden. Die dafür notwendige Vorwärmtemperatur betrug dabei 120°C.

Nach dem Vorwärmen wurden die Bleche zuerst mit 100 mm langen Heftnähten verbunden. Um ein freies Schrumpfen zu behindern, wurden auch bei dem Musterstück der Serie 500 unter den Blechpaketen zwei Querstege angeschweißt, siehe **Abb.** 4-3 (b). Die Blechpakete wurden um 5 mm geneigt um eine spätere Winkelschrumpfung auszugleichen. Die Querstege hatten auch in diesem Fall im Bereich der Schweißnaht einen Freischnitt wodurch eine Durchschweißung der Schweißnaht auf der Unterseite auf ganzer Länge möglich war.



Abb. 4-3: (a) Aufbau des UP-Eindraht-Schweißtraktors, (b) Übersicht des Musterstücks mit angeschweißten Querstegen

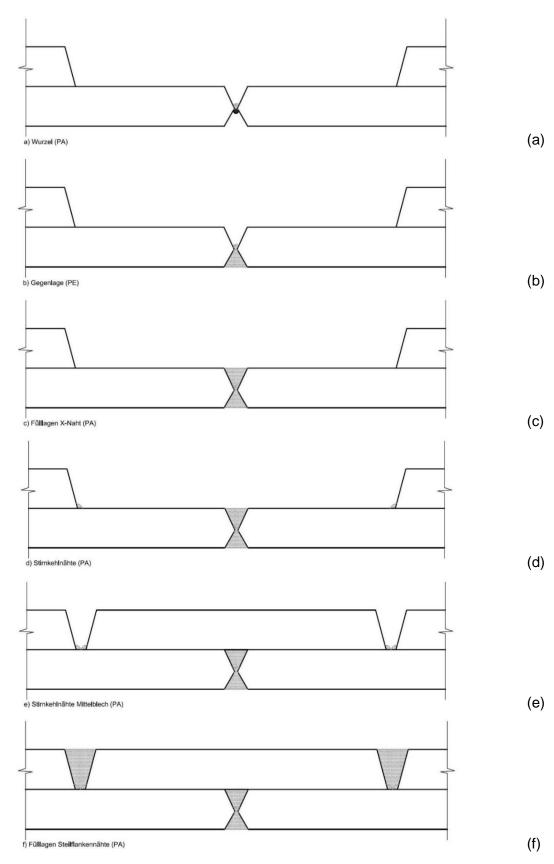


Abb. 4-4: Schweißreihenfolge des Treppenstoßes: (a) Wurzel in PA Position, (b) Gegenlage in PE Position, (c) Füllagen X- Naht in PA Position, (d) Stirnkehlähte in PA Position, (e) Stirnkehlnähte Mittelblech (PA), (f) Fülllagen Steilflankennähte (PA)

In einem ersten Schritt wurde die Wurzel der 2/3 X-Naht mit drei Lagen auf einer Rundkeramik als Schweißbadsicherung geschweißt. Danach wurde die Rundkeramik entfernt und die Gegenseite ausgeschliffen. Mit Hilfe einer Farbeindringprüfung wurden die Oberflächen auf Risse überprüft. Anschließend wurde der Schweißdraht gewechselt und ein Rutil-Fülldraht mit schnell erstarrender Schlacke verwendet, um die Gegenlage zu schweißen. In der Gegenlage im Überkopfbereich wurden über die ganze Länge Pendelraupen gezogen. In fünf Lagen wurde die Schweißnaht auf der Unterseite vervollständigt.

Nach dem Schweißen der Gegenlage wurde auf der Oberseite der Bleche ein UP-Eindraht-Schweißtraktor aufgebaut, der durch eine aufgeklemmte Schiene geführt wurde und die 16 Fülllagen auf der Oberseite der X-Naht schweißte, Abb. 4-3 (a). Die Schweißreihenfolge ist in Abb. 4-4 dargestellt. Nachdem die X-Naht gefertigt worden war, wurden die oberen Bleche links und rechts mit einer Stirnkehlnaht an das untere Blech geschweißt. Nach dem Auskühlen der Blechpakete wurden die Stirnkehlnähte und die X-Naht blecheben verschliffen und mit Magnetpulver auf Oberflächenrisse geprüft. Mit Hilfe einer Ultraschallprüfung wurde außerdem die X-Naht nach Auffälligkeiten untersucht.

In einem weiteren Schritt wurde das Mittelblech eingebracht und ebenfalls beidseitig mittels Stirnkehlnähten an die Blechpakete angeschweißt. Mit dem UP-Eindraht-Schweißtraktor wurden schließlich die Fülllagen der oberen Steilflankennähte abwechselnd je Seite geschweißt.

4.5.4 Zerlegen des Musterstücks

Nach Abschluss der Schweißarbeiten wurde die Unterkonstruktion vom eigentlichen Musterstück abgetrennt. Die Rippen, die unter dem Schweißstoß als Stege aufgeschweißt wurden, um eine freie Winkelschrumpfung der Bleche zu verhindern, wurden durch Brennschneiden von unten nach oben aufgeschnitten. Es wurde keine Veränderung des Winkelverzuges an der Oberseite des Treppenstoßes gemessen. Im Anschluss wurde der Treppenstoß in Querrichtung durch eine Kaltkreissäge in fünf 40 mm breite Streifen aufgeschnitten. Die ersten 90 mm der Schweißnaht und die Bereiche, in denen die Rippen angeschweißt waren, wurden nicht als Prüfkörper verwendet. Die Schnittflächen der Prüfkörper wurden beidseitig Oberflächen planparallel mit einer Toleranz ±0,1 mm gefräst.

4.6 Versuchsdurchführung der Serie 500

4.6.1 Versuchskonzept

Das Versuchskonzept, die Versuchseinrichtung und das Versagenskriterium entsprechen denen der Serien 100 – 400 und wurden schon in den Kapiteln 3.2.1 – 3.2.4 beschrieben.

4.6.2 Versuchsbegleitende Dehnungsmessung und Spannungsberechnung

Um die vorherrschenden Spannungen zu ermitteln, wurden an ausgewählten Stellen, verteilt über den Querschnitt der Prüfkörper, während des statischen Versuchs und während des sich anschließenden Schwingversuchs die Dehnungen kontinuierlich aufgezeichnet. Die Anordnung der Dehnmessstreifen (DMS) für die Versuchsserie 500 ist in Abb. 4-5 dargestellt.

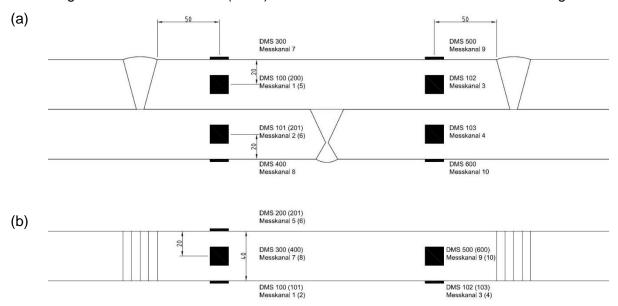


Abb. 4-5: Anordnung der Dehnmessstreifen Versuchsserie 500: (a) Seitenfläche, (b) Oberseite

Auf den einzelnen Prüfkörpern waren 50 mm von den Schweißnahtübergängen entfernt (letzte Lage der UP-Schweißnaht) DMS appliziert. Durch die DMS wurden örtlich die im Prüfkörper vorhandenen Dehnungen bestimmt. Die gegenüberliegende Anordnung der DMS ermöglichte es, den Biegeanteil im Prüfkörper zu ermitteln. In Abb. 4-6 sind die einzelnen DMS Ebenen in einem Prüfkörperschnitt dargestellt. Durch die örtlich gemessenen Dehnungen konnten in den DMS Ebenen Q2 und Q4 die Querdehnungsverläufe und in der DMS Ebenen L2 der Längsdehnungsverlauf bestimmt werden. Für die anderen dargestellten DMS Ebenen wurden die Dehnungsverläufe mithilfe von Eckpunkten durch Strahlensatzberechnungen bestimmt, siehe zum genaueren Vorgehen Kapitel 3.2.6. Zur Berechnung der Nennspannungsschwingbreiten und der Biegeanteile wurde nach der in den Kapiteln 3.2.7 und 3.2.8 beschriebenen Methode vorgegangen. Durch die Aufteilung der einzelnen großen Schweißnaht des Lamellenstoßes in drei kleinere Schweißnähte entstehen drei zusätzlichen Kerben, die als mögliche Rissausgangsorte wirken können. In Abb. 4-7 sind diese zusätzlichen Kerben nochmal schematisch dargestellt.

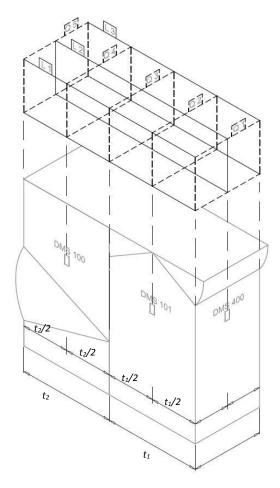


Abb. 4-6: DMS Ebenen im Querschnitt

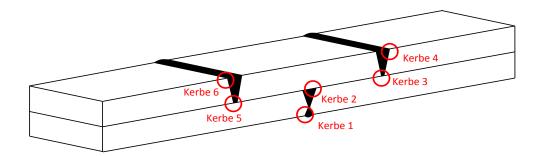


Abb. 4-7: Überblick der maßgeblichen Kerbbereiche

4.7 Versuchsergebnisse der Serie 500

4.7.1 Statische Versuche

Vor den eigentlichen Schwingversuchen wurden die Prüfkörper der Serie 500 mit einer Gesamtblechdicke von 80 mm statisch belastet. Dabei wurde die Last in mehreren Laststufen aufgebracht.

In Tabelle 13 sind die maximal aufgebrachten statischen und dynamischen Lasten für die unterschiedlichen Prüfkörper dargestellt.

PK	statische Vorbelastung	elastung Schwingversuch		ch
rn _	maximale Prüflast	Fo	Fu	ΔF
500	720	700	34	636
501	597	612	56	556
502	597	525	48	477
503	398	437	40	397
504	795	787	71	716

Tabelle 21: Statische und dynamische Lasten [kN] an Prüfkörpern der Serie 500

Die Schwingversuche wurden alle im rein elastischen Bereich durchgeführt. Wie in den Serien zuvor, erlaubten die umfangreichen Dehnungsmessungen auch bei der Serie 500 die Ermittlung unbeabsichtigter Biegung des Prüfkörpers während der Versuche. Damit war ein unmittelbarer Rückschluss auf die Qualität der Prüfkörpereinspannung möglich. Bei einer Differenz der Dehnungen auf gegenüberliegenden Seitenflächen von mehr als 20 % wurde der Versuch gestoppt und der Versuchskörper neu eingespannt. Nach einem unter solchen Umständen erfolgten neuen Einspannen wurde der statische Versuch wiederholt.

4.7.2 Schwingversuche

Auch bei der Versuchsserie 500 wurde ein Spannungsschwingverhältnis von $R\approx 0.1$ eingestellt. Die Oberlast wurde wieder so gewählt, dass sie unterhalb der maximal im statischen Versuch angefahrenen Last lag. Über die gesamte Versuchsdauer wurden die Dehnungen an den DMS aufgezeichnet. Aus den maximalen und minimalen Dehnungswerten wurden die Dehnungsschwingbreiten berechnet. In Abb. 4-8 sind beispielhaft die für den Prüfkörper 504 gemessenen Dehnungsschwingbreiten in Abhängigkeit von der Schwingspielzahl dargestellt.

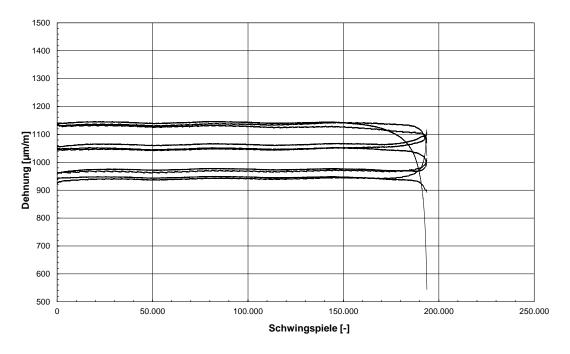


Abb. 4-8: Dehnungsschwingbreiten von Prüfkörper 504

Auf Grund der kleinen Prüffrequenzen ($f=7-8\,\mathrm{Hz}$) wurden auch die Versuchskörper der Serie 500 in einem unregelmäßigen Zyklus visuell geprüft. In Tabelle 22 sind die Schwingspiele aufgetragen, die bis zum Bruch auf den Prüfkörper eingewirkt haben. Der überwiegende Teil der Versuchskörper versagte an der Schweißnahtwurzel der Steilflankennaht (Kerbe 3). Bei Prüfkörper 504 konnte jedoch ein Versagen ausgehend vom Schweißnahtübergang (Kerbe 4) beobachtet werden. In Abb. 4-9 ist jeweils ein Beispiel für die zwei registrierten Versagensmodi (hier von Prüfkörper 503 und 504) abgebildet.

Tabelle 22: Ertragene Schwingspiele bis zum Bruch der Serie 500

Prüfkörper	Schwingspiele bis zum Bruch des Prüfkörpers	Rissausgangsort
500	225.200	Nahtwurzel (Kerbe 3)
501	381.725	Nahtwurzel (Kerbe 3)
502	660.500	Nahtwurzel (Kerbe 3)
503	795.650	Nahtwurzel (Kerbe 3)
504	193.750	Schweißnahtübergang (Kerbe 4)

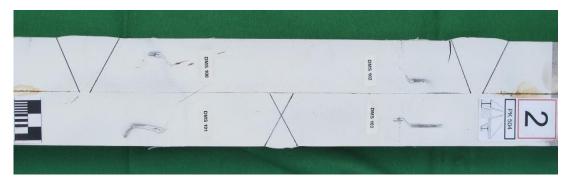


Abb. 4-9: Vergleich der zwei beobachteten Versagenstypen: (oben) Prüfkörper 503 mit der Nahtwurzel als Rissausgangsort, (unten) Prüfkörper 504 mit dem Schweißnahtübergang als Rissausgangsort

4.7.3 Nennspannungsschwingbreiten

4.7.3.1 Nennspannungsschwingbreiten Serie 500

Die Nennspannungen der einzelnen Kerben für alle Prüfkörper der Serie 500 sind in Tabelle 23 zusammengestellt.

Tabelle 23: Nennspannungsschwingbreiten an den maßgebenden Kerben in Serie 500

	Kerbe 1	Kerbe 2	Kerbe 3	Kerbe 4	Kerbe 5	Kerbe 6
Prüfkörper	$\Delta\sigma_{nom,1}$	$\Delta\sigma_{nom,2}$	$\Delta\sigma_{nom,3}$	$\Delta\sigma_{nom,4}$	$\Delta\sigma_{nom,5}$	$\Delta\sigma_{nom,6}$
	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]
500	175	195	195	216	195	216
501	160	171	170	183	171	183
502	134	146	146	161	145	157
503	115	124	124	133	123	132
504	213	220	217	236	220	220

4.7.3.2 Biegeanteile - Serie 500

Wie in Kapitel 3.2.8 erläutert errechnen sich die Biegeanteile aus dem Vergleich der Dehnungen, die mit Hilfe der sich gegenüberliegenden DMS gemessen wurden. Tabelle 24 gibt einen Überblick über die Biegeanteile der Versuchsserie 500. Die berechneten Spannungsanteile aus die Biegung M_x liegen unter 7,8 % bezogen auf die Gesamtspannung. Die Biegeanteile für M_y betragen maximal 13,5 %.

	Anteil der Biegung M _x [%]		Anteil der	Anteil der
Prüfkörper	Einzelblech oben	Einzelblech unten	Biegung M _y links [%] Blechpaket	Biegung M _y rechts [%] Blechpaket
500	4,1	3,0	13,5	11,4
501	0,5	0,1	7,2	8,3
502	0,4	0,8	8,1	11,6
503	2,0	1,1	8,5	8,3
504	7,8	0,04	9,5	9,4

4.7.4 Auswertung der Ergebnisse der Serie 500

Ausgewertet wurden die Versuche mit den berechneten Nennspannungen an der jeweils maßgebenden Kerbe in Abhängigkeit der Schwingspiele bis zum Prüfkörperbruch. In Abb. 4-10 ist die Auswertung mit der Nennspannung am Versagensort, der Tabelle 22 entnommen werden kann, und der für DIN EN 1993-1-9 festgelegten Steigung der *Wöhler*linie m=3 dargestellt.

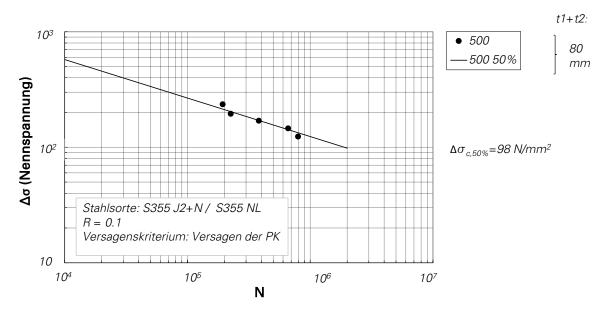


Abb. 4-10: 50 % Wöhlerlinie der Serie 500

5 Statistische Auwertung und Kerbfallableitung

Im Rahmen des Forschungsvorhabens wurden Schwingversuche an den Konstruktionsdetails des Lamellenstoßes und des Treppenstoßes in insgesamt fünf Versuchsserien durchgeführt. Die Prüfkörper der Serie 100 mit einer Gesamtblechdicke von 180 mm entsprechen in etwa der oberen Grenze der zurzeit im Brückenbau üblichen zweiteiligen Lamellenstöße. Die Prüfkörper der Serie 200 besaßen eine Gesamtdicke von 45 mm. Die Versuchsserie deckt damit etwa die untere Grenze des im Brückenbau üblichen Bereiches ab.

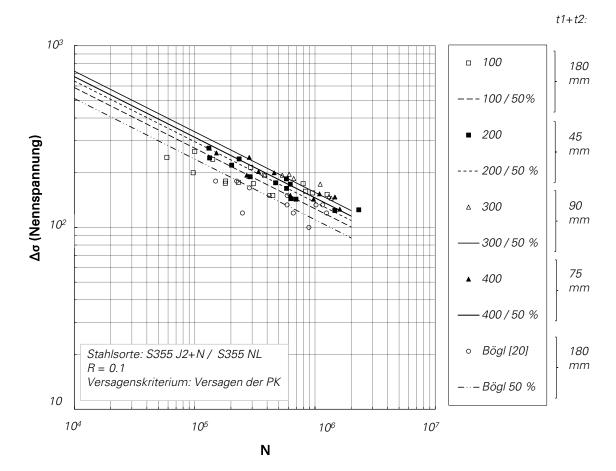
Für die folgenden Auswertungen zur Ermüdungsfestigkeit des Lamellenstoßes werden Versuchsergebnisse aus [20], [21] und diesem Projekt verwendet. Die Versuche sind vergleichbar hinsichtlich Prüfkörperfertigung (Zwangslage) und Spannungsschwingbreiten-Verhältnis (R≈0,1). In Tabelle 25 sind alle Versuchsergebnisse, die für die statistische Auswertung herangezogen wurden, zusammengetragen.

Tabelle 25 Versuchsergebnisse für statistische Auswertung

Prüfkörper	Nennspannung Δσ [N/mm²]	Schwingspielzahl bis zum Versagen N _{Failure} [-]	kritische Kerbe
Serie 100 (t1 + t2 =	180 mm)		
100	243	58 649	(2)
101	177	230 230	(2)
102	174	307 428	(2)
103	262	99 959	(1)
104	237	141 186	(1)
105	150	445 575	(2)
106	180	180 701	(2)
107	174	796 360	(3)
109	175	179 803	(3)
112	152	1 261 370	(2)
120	158	836 230	(2)
121*	147	2 223 975	kein Versagen
121	200	97 075	(2)
122	155	954 726	(2)
123	214	292 475	(2)
124	194	379 075	(2)
Serie 200 (t1 + t2 = 4	45 mm)	1 1	
200	220	202 550	(1)

Fortsetzung Tabelle 25	5		
201	125	2 308 146	(1)
203	273	131 199	(1)
205	238	234 103	(1)
207*	111	7 017 158	(1)
208	173	623 097	(1)
209	176	469 600	(1)
210	185	579 047	(1)
211	190	289 175	(1)
212	241	133 048	(1)
220	144	631 700	(1)
221	124	1 461 225	(1)
222†	-	1 359 610	(1)
223	143	694 250	(1)
224	164	580 425	(1)
Serie 300 (t1 + t2 = 90	mm)		
300	194	533 875	(2)
301	186	665 125	(3)
302	196	610 075	(3)
303	148	1 305 600	(3)
304	173	1 105 200	(3)
305	145	1 362 000	(3) (2)
306*	122	2 267 250	kein Versagen
306	195	381 850	(2)
307*	132	3 412 375	kein Versagen
307	191	281 375	(2)
308†	150	1 190 794	(3) (2)
309†	175	825 749	(3)
Serie 400 (t1 + t2 = 75	mm)		
400	203	339 425	(3)
401	243	283 750	(3)
402	150	624 525	(3)
403	143	972 500	(3)
404*	117	1 712 875	kein Versagen
404	257	151 725	(3)
405	194	270 700	(3)

Fortsetzung Tabelle 2	25		
406	126	1 606 875	(3)
407	153	1 090 500	(3)
408	147	1 462 910	(3)
409	200	457 400	(3)
zusätzliche Serie [20]	(t1 + t2 = 180 / 190 mm)	
G.Pk1	133	1 158 024	
G.Pk2	133	585 189	(3)
G.Pk3	133	1 018 811	(3)
G.Pk4	150	416 326	(3)
G.Pk5	150	586 503	
G.Pk6	100	890 148	(3)
G.Pk7	180	149 284	
G.Pk8	180	223 084	
G.Pk9x	120	249 174	(3)
G.Pk10	120	659 757	(3)
G.Pk11	120	1 244 958	(3)
G.Pk13	165	285 154	(3)


R≈0,1 für alle Versuchskörper

^{*} Versuch abgebrochen, Versuchskörper ohne sichtbaren Anriss, Neustart des Versuches auf höherem Spannungsniveau

[†] Versuch aus technischen Gründen abgebrochen: Neustart auf höherem Spannungsniveau

x Statistischer Ausreißer

^{(1)/(2)/(3)} kritische Kerbe (2 = Stirnfugennaht, 1 oder 3 = Schweißnahtüberhöhung)

In Abb. 5-1 sind alle Versuchsergebnisse in einem Wöhlerdiagramm zusammengetragen.

Abb. 5-1: 50 % Wöhlerlinien aus [20], [21] und diesem Projekt

Die Versuche an den unterschiedlich dicken Lamellenstoßblechpaketen zeigen, dass der Größeneinfluss einen ausgeprägten Einfluss auf die Ermüdungsfestigkeit besitzt. In Anlehnung an DIN EN 1993-1-9 [8] kann der Größeneinfluss, wie in Gleichung (5-1) dargestellt, berücksichtigt werden.

$$\Delta\sigma_{c,Red} = k_s * \Delta\sigma_c \tag{5-1}$$

mit:

 $\Delta\sigma_{c,Red}$ reduzierter Bezugswert für die Ermüdungsfestigkeit

k_s Abminderungsfaktor für den Bezugswert der Ermüdungswert

 $\Delta\sigma_c$ Bezugswert für die Ermüdungsfestigkeit bei 2*10 6 Schwingspielen

Für Blechpaketdicken t > 25 mm kann der Abminderungsfaktor nach Gleichung (5-2) berechnet werden.

$$k_s = \left(\frac{25}{t}\right)^n \tag{5-2}$$

mit:

- t Blechdicke
- n Korrekturexponent

Nach [18] kann der Korrekturexponent n in Abhängigkeit des geschweißten Konstruktionsdetails Werte zwischen 0.1 und 0.4 annehmen. Um einen geeigneten Korrekturfaktor bestimmen zu können, wird die Standardabweichung s_N des Streufeldes bewertet. Dafür werden die aus den Versuchen bekannten Spannungsschwingbreiten nach Gleichung (5-1) und (5-2) auf 25 mm normiert. Da der Korrekturexponent n unbekannt ist, wird dieser als Variable im Bereich $0,1 \le n \le 0,3$ angesetzt.

Im folgenden Diagramm ist die Standardabweichung s_N in Abhängigkeit des Korrekturexponenten n dargestellt, Abb. 5-2. Für die Blechdicke t wird dabei zum einen die maximale Einzelblechdicke und zum anderen die Gesamtblechdicke angesetzt.

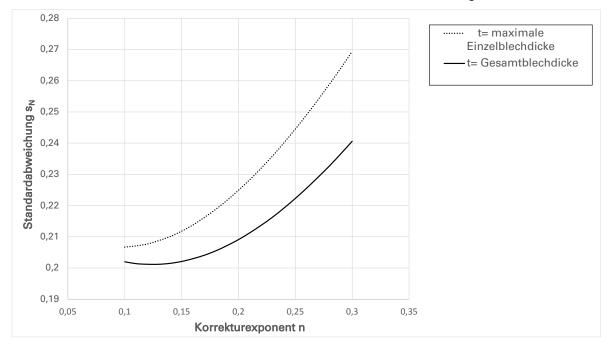


Abb. 5-2: Standardabweichung der normierten Versuchswerte in Abhängigkeit von s

Je kleiner die Standardabweichung, desto kleiner ist die Streuung der normierten Werte. Folglich kann der Korrekturexponent bei der kleinsten Standardabweichung den Größeneinfluss am Stichprobenumfang am besten abbilden.

Abb. 5-2 zeigt, dass ein Ansetzen der Gesamtblechdicke gegenüber der maximalen Einzelblechdicke bessere Ergebnisse liefert. Das Minimum ist etwa bei n=0,125 erreicht. Auf der sicheren Seite wird der Wert für die folgenden Untersuchungen mit n=0,2 definiert. Dies entspricht dem anzusetzenden Wert nach DIN EN 1993-1-9 [8] für querlaufende Stumpfnähte.

Die statistische Auswertung der Versuchsreihen basiert auf dem Prinzip des Hintergrunddokumentes [4] zu DIN EN 1993-1-9 [8]. Für die statistische Auswertung wird eine lineare Regression mit einer definierten Steigung von m=3 durchgeführt. Anschließend wird die charakteristische Ermüdungsfestigkeit bei 2 Millionen Schwingspielen ausgewertet. Für die statistische Auswertung werden alle Versuchswerte nach Gleichung (5-1) und (5-2) auf 25 mm normiert. Die umgerechneten Werte sind in Tabelle 44 im Anhang 11.2 zusammengestellt. In Abb. 5-3 ist das Streufeld mit statistischer Auswertung für unterschiedliche Überlebenswahrscheinlichkeiten dargestellt. Im Vergleich zu Abb. 5-1 wird deutlich, dass das Normieren der Date zur Berücksichtigung des Größeneffekts zu einem deutlich kompakteren Streufeld führt.

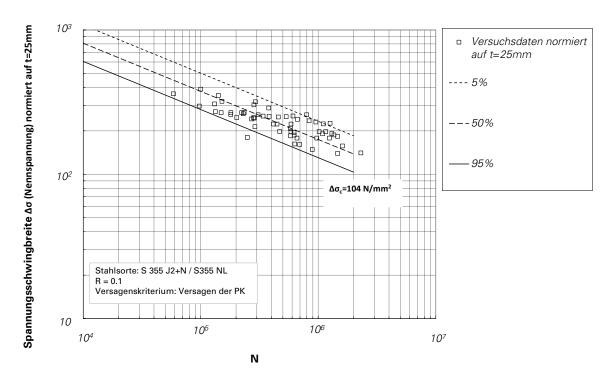


Abb. 5-3: Statistische Auswertung Konstruktionsdetail Lamellenstoß

Die statistische Auswertung nach [4] führt zu $\Delta\sigma_c$ = 104 N/mm². Dieser Wert repräsentiert die untere Grenze eines einseitigen 95% Vorhersageintervalls für eine Stichprobe von 58 Versuchskörpern.

In Abb. 5-4 ist der Bezugswert für die Ermüdungsfestigkeit bei 2*10⁶ Schwingspielen für alle Versuche dargestellt

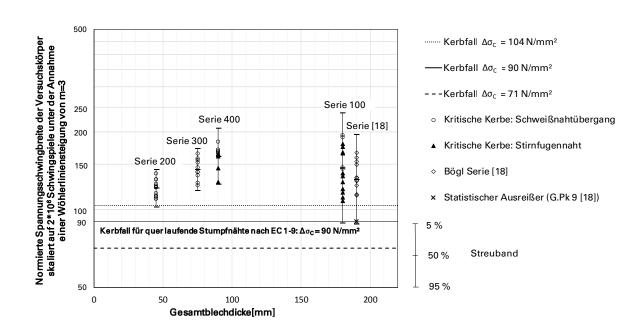


Abb. 5-4: Versuchswerte im Vergleich mit anderen Kerbfällen

Schwingversuche wurden auch für das Konstruktionsdetail Treppenstoß durchgeführt. Hier ist der Stichprobenumfang jedoch zu klein um eine zuverlässige statistische Auswertung durchführen zu können. Die fünf durchgeführten Versuche geben keinen Hinweis darauf, dass sich dieses Konstruktionsdetail ermüdungstechnisch besser oder schlechter als der Lamellenstoß verhält.

6 Numerische Untersuchungen

6.1 Ziel der numerischen Untersuchung

Ziel der numerischen Untersuchungen war es durch Parameterstudien mit dem durch die Versuche verifiziertem Modell systematisch den Einfluss der Blechdicken auf die Ermüdungsfestigkeit zu erfassen. Es wurden Untersuchungen mit Struktur- und Kerbspannungen durchgeführt.

6.2 Diskretisierung der Kerbbereiche

6.2.1 Ermittlung der Versuchskörpergeometrie

Vor den Ermüdungsversuchen wurde an jedem Prüfkörper die Geometire der Körperkanten ermittelt. Die Schnittkannten der Prüfkörper wurden nach dem Fräsen nicht gebrochen. Es wurde nur der Grad entfernt, sodass eine scharfe Kante stehen blieb. Der Prüfkörper wurde mit der gefrästen Fläche auf ein Papierstreifen gelegt und die Umrisse nachgezeichnet. Die Kontur der Prüfkörper wurde mit einem hochauflösenden Scanner digitalisiert. In Autocad 14 wurde die eingescannte Kontur nachgezeichnet und ein 2D Modell der Geometrie der Versuchskörper erzeugt. Für die Kerbspannungsanalyse wurden die Modelle so aufbereitet, dass alle Radien ≤ 1 mm mit einem Ersatzradius R = 1 mm ausgerundet wurden. Dieser Arbeitsschritt wurde im Bereich der Decklagen des Stumpfstoßes ausgeführt. Zur Analyse der Kerbe an der Stirnfugennaht wurde in die Versuchskörpergeometrie die Blechtrennung modelliert und im Bereich der Stirnfugennaht mit einer Schlüssellochkerbe ausgerundet. Die Modellierung orientiert sich dabei an den Empfehlungen des IIW [18] zur Berechnung von Kerbspannungen an FE Modellen, siehe Abb. 6-1.

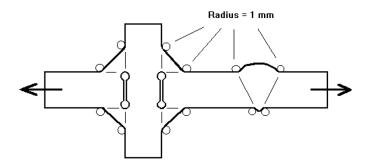


Abb. 6-1: Idealisierte Ausrundungen von Schweißnahtübergängen und Wurzelpunkten [18]

6.2.2 Erstellung der FE Modelle

6.2.2.1 Überblick

In Ansys Workbench 14 wurde für jeder Versuchskörperserie ein FE-Modell erstellt. Zur Berechnung der globalen Dehnungen wurde ein grobvernetztes Gesamtmodell erzeugt. In Abb. 6-2 ist schematisch die am FE Modell untersuchten Kerben dargestellt.

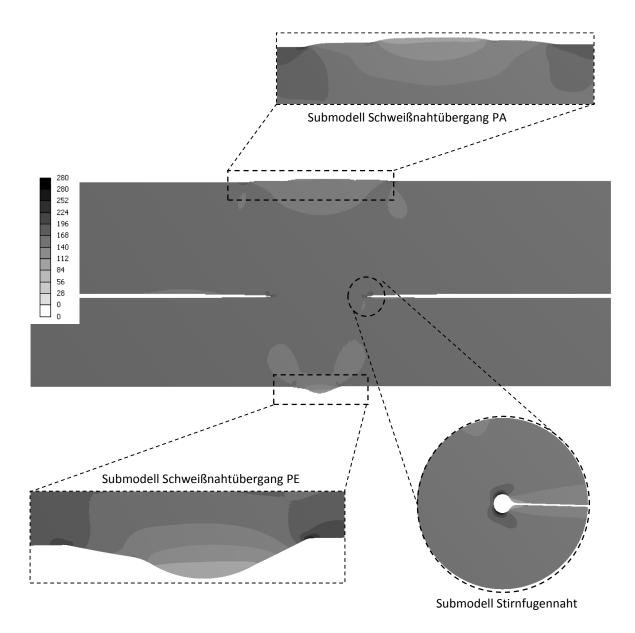


Abb. 6-2: Schematische Darstellung der untersuchten Kerben

6.2.2.2 Modell zu Berechnung der Kerbspannungen am Schweißnahtübergang

In Ansys Workbench 14 wurde für jede Versuchskörperserie ein FE-Modell erstellt. Zur Berechnung der globalen Dehnungen wurde ein grobvernetztes Gesamtmodell erzeugt. Die Lagerungsbedingungen sind in Abb. 6-2 und Abb. 6-3 dargestellt. An der Stirnfläche der

Bleche wurde eine unverschiebliche Lagerung angenommen. Auf der gegenüberliegenden Seite wurde die Kraft als Linienlast auf der Blechkante definiert.

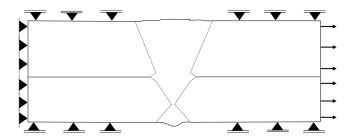


Abb. 6-3: Grobmodell Schweißnahtübergang mit Lagerungsbedingung und Krafteinleitung

Zur Berechnung der lokalen Dehnungen wurden für die Bereiche der Schweißnahtübergänge Submodelle erstellt und diese im Bereich der Kerben fein vernetzt. Die Submodellbereiche sind in Abb. 6-2 dargestellt. Aus dem Gesamtmodell wurden die Knotenverschiebungen auf die Randknoten der Submodelle aufgebracht (Mapping). Mit den Submodellen wurden die lokalen Dehnungen und Spannungen im Bereich der Kerben berechnet.

6.2.2.3 Modell zur Berechnung der Kerbspannungen in der Stirnfugennaht

Zur Berechnung der Kerbspannungen in der Stirnfugennaht wurde ein Submodell im Sinne eines Teilmodells verwendet. Dafür wurde das Globalmodell vereinfacht durch Randbedingungen erfasst. Das Modell ist in Abb. 6-4 dargestellt

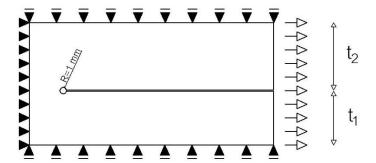


Abb. 6-4: Grobmodell Stirnfugennaht mit Lagerungsbedingung und Krafteinleitung

Durch eine Parameterstudie sollten die Ermüdungsfestigkeiten in Abhängigkeit des Bleckdickeneinflusses untersucht werden. Dafür wurde die digitalisierte Geometrie der Versuchskörper in Inventor 14 parametrisiert.

6.2.3 Konvergenzstudie

Für das Grobmodel und die Submodelle wurde eine Konvergenzstudie zur Netzfeinheit durchgeführt. Die Konvergenzstudie wurde mit der Kerbspannung an einem für alle weiteren FE-Berechnungen repräsentativen Schweißnahtübergang durchgeführt. Die Netzgröße s₁ im Submodell auf der Kante am Radius der Kerbe wurde von 0,5 mm bis 0,03 mm verfeinert. Die

Kantenlänge für das globale Netz am Submodell wurde in jedem Verfeinerungsschritt mit $s_2 = 2 * s_1$ vernetzt. Die Ergebnisse der Konvergenzstudie am Submodell sind in Abb. 6-5 dargestellt. Es zeigt sich, dass ab einer Kantenlänge $s_1 = 0,04$ mm die Kerbspannungen konvergieren. In allen nachfolgenden Berechnungen wurden die Submodelle im Bereich der Kerben mit einer Kantenlänge $s_1 = 0,04$ mm und im globalen Bereich mit $s_2 = 0,06$ vernetzt.

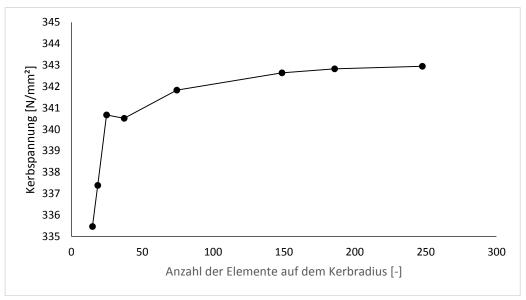


Abb. 6-5: Konvergenzstudie Submodell

Für das Grobmodell wurde ebenfalls eine Konvergenzstudie durchgeführt. Als Referenzgröße wurde wieder die Kerbspannung im Submodell verwendet. Die Kantenlänge s_3 wurde zwischen 5 mm und 0,5 mm variiert. Abb. 6-6 zeigt, dass die Ergebnisse ab einer Kantenlänge s_3 = 1mm konvergieren. Die Vernetzung der Grobmodelle erfolgte in allen weiteren Berechnungen mit s_3 = 1 mm.

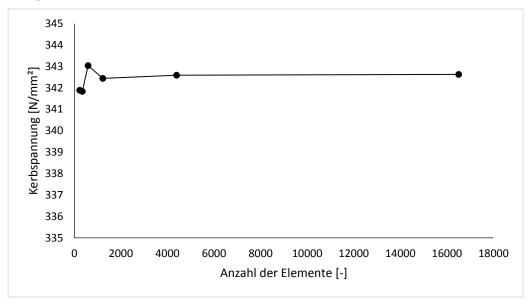


Abb. 6-6: Konvergenzstudie Grobmodell

6.3 Berechnung von Strukturspannungen

6.3.1 Strukturspannungskonzept

der Ermüdungsfestigkeit Zur Berechnung von Schweißnahtdetails wurde das Strukturspannungskonzept entwickelt. Beim Strukturspannungskonzept wird die Spannungserhöhung berechnet, die auf Grund der Geometrie der Schweißnaht unmittelbar vor der Schweißnahtkerbe auftritt. Das Konzept ist auf Details beschränkt, bei denen die maßgebende Kerbe nicht im Inneren der Schweißnaht liegt. Bei diesem Konzept wird nicht die Kerbwirkung der Schweißnaht selbst betrachtet. Die Strukturspannungen σ_{hs} können messtechnisch und experimentell bestimmt werden. Die Bemessung erfolgt mit experimentell für Strukturspannungen ermittelte Wöhlerkurven. In DIN EN 1993-1-9 [8] sind für Strukturspannungen drei Wöhlerkurven für unterschiedliche Konstruktionsdetails in Tabelle B.1 aufgeführt. Die Wöhlerkurven gelten für folgende Orte der Rissbildung:

- Nahtübergang von Stumpfnähten
- Nahtübergang von Kehlnähten an Anschlüssen
- Nahtübergang von Kehlnähten in Kreuzstößen

Abb. 6-7 zeigt die Strukturspannungen am Schweißnahtübergang eines Stumpfstoßes. Die Strukturspannungen werden durch Extrapolation des am Schweißnahtübergang ermittelten Spannungsverlaufs ermittelt. Die Extrapolation kann mit zwei Stützstellen linear (vgl. Abb. 6-7) oder mit drei Stützstellen quadratisch erfolgen.

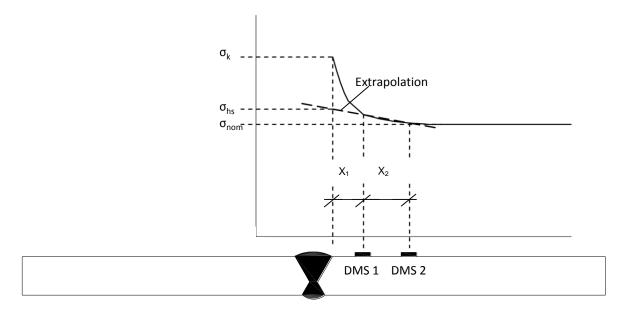


Abb. 6-7: Strukturspannungskonzept, angewendet auf Stumpfstoß – Ermittlung Strukturspannungen auf Grundlage von DMS Messungen am Schweißnahtübergang

6.3.2 Gemessene Strukturspannungen

Vor der Durchführung der Ermüdungsversuche wurden an einem Teil der Versuchskörper im Bereich der Schweißnahtübergänge mit 2 mm langen Dehnmesstreifen (DMS) die örtlichen Dehnungen gemessen. Die DMS wurden als Ketten mit 5 einzelnen DMS und einem 2mm Abstand untereinander appliziert. Bei der Versuchsserie 100 und 200 wurde die erste DMS in einem 2mm Abstand vom Schweißnahtübergang platziert. Bei der Serie 400 betrug der Abstand 4 mm. Als Referenzwert wurde die gemessene Dehnung ε_{nom} im kerbunbeeinflussten Bereich (Abstand zum Schweißnahtübergang 50 mm) verwendet. Abb. 6-8 zeigt die applizierten DMS auf einem Versuchskörper der Serie 200. Die DMS wurden mittig auf den Versuchskörpern platziert.

Aus den örtlichen Dehnungen ϵ_i wurden mit Gleichung 6-1 die Dehnungen am Schweißnahtübergang durch lineare Extrapolation berechnet. Mit Gleichung 6-2 wurden aus den örtlichen Dehnungen ϵ_{hs} die Strukturspannungen σ_{hs} für den Schweißnahtübergang berechnet. Als Stützstellen für die Extrapolation wurden die Dehnung im Abstand von 4 mm und 10 mm vom Schweißnahtübergang verwendet. Die berechneten Strukturspannungen sind in Tabelle 26 für die einzelnen Schweißnahtübergänge dargestellt. Damit die einzelnen Ergebnisse untereinander vergleichbar sind, wurden die Strukturspannungen auf eine Nennspannung $\sigma_{nom} = 100 \text{N/mm}^2$ im unbeeinflussten Bereich normiert. In Abb. 6-9 sind die Bezeichnungen für die einzelnen Schweißnahtübergänge dargestellt. Bei der Umrechnung von Dehnungen in Spannungen wurde der Einfluss der Querdehnung vernachlässigt.

$$\varepsilon_{hs} = \frac{\varepsilon_{4 mm} - \varepsilon_{10 mm}}{6} + \varepsilon_{10 mm}$$
 6-1

$$\sigma_{hs} = E * \varepsilon_{hs} \qquad mit E = 210.000 N/mm^2 \qquad 6-2$$

$$\sigma_{hs} = k_{hs} * \sigma_{nom}$$
 6-3

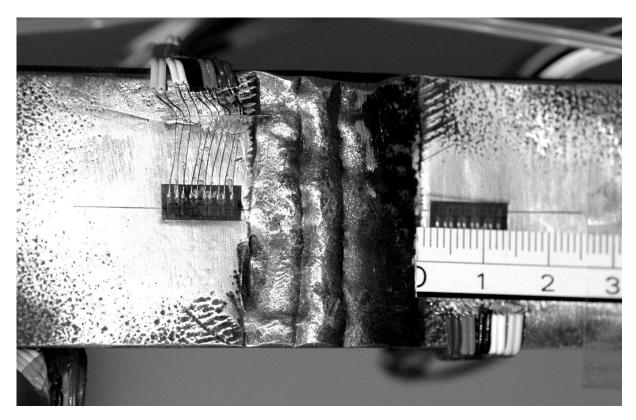


Abb. 6-8: Applizierte DMS am Versuchskörper Pk. 205

Tabelle 26: Strukturspannungen am Schweißnahtübergang experimentell ermittelt, normiert auf 100 N/mm²

	Blechdicke		Schweißnahtübergang						
Serie	[mm]	Messung	PE 1	PE 2	PA 1	PA 2			
	[111111]		[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]			
100	100 +80	1	113,43	137,88	99,84	156,88			
100	100 +00	2	114,90	110,25	93,69	165,35			
200	20 + 25	1	113,71	133,89	115,17	111,47			
200	20 1 20	2	132,25	89,79	280,85	215,20			
400	40 + 50	1	99,85	126,19	138,93	114,73			

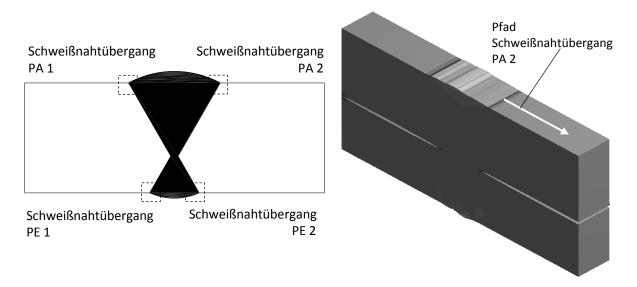


Abb. 6-9: Bezeichnung der Schweißnahtübergänge Abb. 6-10: Pfad an der Blechoberfläche

6.3.3 Numerische Berechnung der Strukturspannungen

Die numerische Ermittlung der Strukturspannungen erfolgte an Modellen mit der ausgemessenen Prüfkörpergeometrie. Im FE-Modell wurden ausgehend vom Schweißnaht- übergang die von Mises Vergleichsspannungen entlang eines Pfades ausgelesen. Der Pfad wurde an der Blechoberfläche platziert und greift die zur Messung äquivalenten Spannungen ab, vgl. Abb. 6-10. Durch Extrapolation der Spannungen an den Punkten 4 mm und 10 mm wurden mit Gleichung 6-4 die Strukturspannungen für die einzelnen Kerben berechnet. Tabelle 27 zeigt die numerisch berechneten Strukturspannungen bei einer Nennspannung $\sigma_{nom} = 100N/mm^2$.

$$\sigma_{hs} = \frac{\sigma_{4 \, mm} - \sigma_{10 \, mm}}{6} + \sigma_{10 \, mm}$$
 6-4

Tabelle 27: Strukturspannungen am Schweißnahtübergang ermittelt durch FE-Berechnungen, Nennspannung $\sigma_{\text{nom}} = 100 \text{ N/mm}^2$

Blechdicke	Schweißnahtübergang									
[mm]	PE 1	PE 1	PE 1	PE 1						
[111111]	[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]						
100 +80	116,19	125,85	130,00	140,93						
20 + 25	112,23	109,29	120,17	117,58						
40 + 50	117,43	124,17	145,04	145,37						

6.3.4 Bewertung der Ergebnisse

Das Verhältnis zwischen Strukturspannung σ_{hs} und Nennspannung σ_{nom} wird Strukturspannungskonzentrationsfaktor SCF bezeichnet. Bisher wurden bei den Berechnungen nur die statischen Beanspruchungen betrachtet. Der SCF-Wert kann auch bei Schwingbeanspruchung verwendet werden, da er den geometrisch beeinflussten Spannungsanstieg an dem Schweißnahtübergang beschreibt. Die berechneten SCF-Werte für die hier untersuchten Schweißnahtübergänge sind in Tabelle 28 dargestellt. Mit Kenntnis der SCF-Werte kann aus den Einwirkenden Nennspannungen eine Strukturspannung $\Delta \sigma_{hs}$ nach Gleichung 6-5 ermittelt werden. Mit der dem Konstruktionsdetail Strukturspannungswöhlerline $\Delta \sigma_{FAT}$ kann die Ermüdungsfestigkeit auf Nennspannungsniveau nach Gleichung 6-6 bzw. 6-7 berechnet werden. Die berechneten Ermüdungsfestigkeiten auf Nennspannungsniveau für die experimentell und numerisch berechneten Strukturspannungen sind in Tabelle 29 dargestellt. Die Berechnung erfolgte mit $\Delta \sigma_{FAT} = 100 \text{ N/mm}^2$, dies entspricht nach DIN EN 1993-1-9 [8] dem volldurchgeschweißtem Stumpfstoß, bei dem die Nähte nicht blecheben geschliffen wurden. Der Maßstabseffekt wird im Rahmen dieser Untersuchungen nicht berücksichtigt.

$$\Delta \sigma_{hs} = SCF * \Delta \sigma_{nom}$$
 6-5

$$\Delta \sigma_{FAT} = SCF * \Delta \sigma_c$$
 6-6

$$\Delta \sigma_c = \frac{\Delta \sigma_{FAT}}{SCE}$$

Taballa 00: COE Ealstanau	Consider Oak 10 a ale title a second	
Labelle 28: SCF Faktorer	i tur den Schweißnantuberdai	ng der ursprünglichen Geometrie

	Blechdicke		Schweißnahtübergang									
Serie	[mm]	PE 1		PE 1		PE 1		PE 1				
	[]	FE Exp.		FE	Exp.	FE	Ехр.	FE	Exp.			
100	100 +80	1,14	1,13	1,19	1,10		1,10	1,14	1,12			
	100 100	.,	1,16	1,10	1,06	,,	1,03	.,	1,30			
200	20 + 25	1,23	1,14	1,11	1,13	1,11	1,08	1,08	1,21			
300	40 + 50	1,14	-	1,18	-	1,19	-	1,16	-			
400	25 + 70	1,14	1,00	1,22	1,25	1,22	1,19	1,26	1,16			

Tabelle 29: Umrechnung der gemessenen und numerisch ermittelten Strukturspannung in die Ermüdungsfestigkeit $\Delta\sigma_c$ nach Gleichung 6-7

			Schweißnahtübergang									
Serie	Blechdicke	PE	1	PE	∃ 1	PE	<u> </u>	PE 1				
Cono	[mm]	links	unten	rechts	unten	links	oben	rechts oben				
		FE	Ехр.	FE	Exp.	FE	Ехр.	FE	Ехр.			
100	100 +80	87,98	88,41	83,92	91,10 81,74 90,7	90,72	87,75	88,95				
100	100 100	07,00	86,21	00,02	94,34	01,74	97,09	07,70	77,04			
200	20 + 25	81,50	93,72	90,29	88,58	81,74	92,56	87,75	82,69			
300	40 + 50	88,04	-	84,50	-	83,76	-	86,35	-			
400	25 + 70	87,84	88,28	81,88	79,78	82,25	83,79	79,53	86,50			

Die Ermüdungsfestigkeit auf Nennspannungsniveau für das Konstruktionsdetail Stumpfstoß mit nicht blecheben geschliffenen Nahtübergängen liegt nach DIN EN 1993-1-9 [2] bei $\Delta\sigma_c=90\ \text{N/mm}^2$. In Kapitel 0 wird für den Lamellenstoß ein Kerbfall von $\Delta\sigma_c=104\ \text{N/mm}^2$ ermittelt. Die Ergebnisse aus den numerischen Strukturspannungsberechnungen zeigen eine gute Übereinstimmung mit den experimentell ermittelten Strukturspannungen. Die gute Übereinstimmung der experimentell und numerisch ermittelten Strukturspannung zeigt, dass die FE-Modelle sehr gut das Dehnungsverhalten am Schweißnahtübergang der ursprünglichen Prüfkörpergeometrie abbilden.

6.4 Berechnung von Kerbspannungen

6.4.1 Kerbspannungskonzept

Beim Kerbspannungskonzept werden die örtlichen elastischen Spannungen am versagenskritischen Ort (Kerbe) auf Grundlage der Elastizitätstheorie berechnet. Bei geschweißten Bauteilen kann davon ausgegangen werden, dass im Bereich der Schweißnahtübergänge und der Schweißnahtwurzel (Kerben) Schweißeigenspannungen vorhanden sind. Durch die Lage der Kerben im Bereich der Wärmeeinflusszone (WEZ) muss an dieser Stelle auch mit unterschiedlichen Werkstoffeigenschaften und Festigkeiten (Grundwerkstoff, Wärmeeinflusszone und Schweißgut) gerechnet werden. Durch die Geometrie des Schweißnahtübergangs wird in diesem Bereich die Geometrie der Kerbe bestimmet.

Den örtlich berechneten Kerbspannungen werden Kerbspannungswöhlerlinien gegenübergestellt. Durch die Kerbspannungswöhlerlinien werden die Eigenspannungen und die Werkstoffeigenschaften erfasst. Die Berücksichtigung der Schweißnahtgeometrie erfolgt bei der Berechnung der Kerbspannungen. Der versagenskritische Ort wird mit einem Kerbradius $\rho_f = 1$ mm ausgerundet. Durch die Kerbspannung kann wiederum eine Ermüdungsfestigkeit auf Nennspannungsniveau $\sigma_{c.theoretisch}$ berechnen werden.

6.4.2 Kerbspannungswöhlerlinie

Für elastisch berechnete Kerbspannungen ist in der IIW Richtlinie bei $N = 2x10^6$ Schwingspiele die Ermüdungsfestigkeit FAT = 225 N/mm² angegeben. Diese Angabe bezieht sich auf eine Überlebenswahrscheinlichkeit Pü = 97,5% und berücksichtigt die Berechnung der Kerbspannungen mit der 1. Hauptspannung. Die Kerbspannungswöhlerlinie ist für $t \ge 5$ mm gültig.

Die Kerbspannungswöhlerlinie fußt auf umfangreichen Untersuchungen an Schweißverbindungen mit unterschiedlichen Knotenausbildungen und Lastverhältnissen [29]. Die Berechnung des Kerbfalls kann mithilfe von Gleichung 6-9 durchgeführt werden. Die Kerbformzahl K_t wurde für den Kerbradius $\rho_f=1$ mm und einem Nahtanstiegswinkel der in etwa dem Mittelwert der Geometrie der einzelnen Versuchskörpern entspricht, numerisch berechnet. Die Ergebnisse dieser Untersuchungen an spannungsarmgeglühten Proben ist für die Stützwerte $\sigma_{e,A50}$ in Abb. 6-11 aufgetragen. Jeder Versuchspunkt repräsentiert eine Wöhlerkurve. [29]

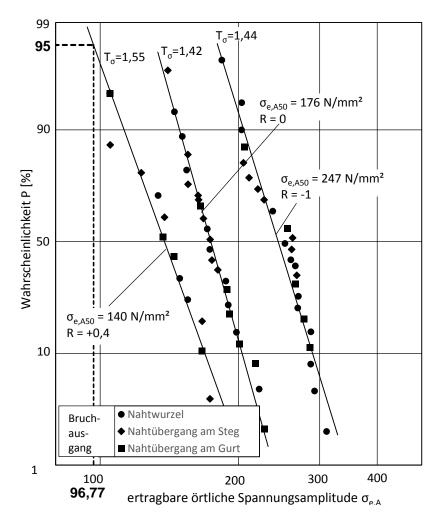


Abb. 6-11: Ermüdungsfestigkeit aus den experimentell und numerisch ermittelten Strukturspannungen für die einzelnen Schweißnahtübergänge PE1 und PE 2 [29]

Bei dem hier untersuchten Schweißnahtdetail muss mit hohen Eigenspannungen gerechnet werden. Für die weitere Berechnung wird die Kerbspannungswöhlerlinie für R = +0.4 herangezogen. Durch den Mittelspannungseinfluss wird der Eigenspannungsanteil der Versuchskörpern bei den hier durchgeführte Berechnung mit $\Delta\sigma_{Kerb, Pü95}$ = 200 N/mm² abgedeckt. Das entspricht den Empfehlungen in [30].

Die sogenannte Kerbformzahl beschreibt das Verhältnis zwischen Kerbspannung $\sigma_{v,K}$ und der Spannung σ_v im kerbunbeeinflussten Bereich eines Bauteils, siehe Gleichung 6-8. Die Kerbformzahl ist von der Geometrie abhängig.

$$K_t = \frac{\sigma_{v,K}}{\sigma_v}$$
 6-8

Die Berechnung der numerisch ermittelten Ermüdungsfestigkeit erfolgt mit der Kerbformzahl K_t und dem Wert der Kerbspannungswöhlerlinie bei $2x10^6$ Schwingspielen nach Gleichung 6-9.

$$\Delta \sigma_{C,Num} = \frac{\Delta \sigma_{Kerb,P\ddot{u}95}}{K_t}$$
 6-9

Mithilfe der numerisch ermittelten Kerbspannung auf der Einwirkungsseite und der Kerbspannungswöhlerlinie nach [30] auf der Widerstandsseite, lässt sich die Ermüdungsfestigkeit im FE Modell berechnen. Dabei ist zu beachten, dass dieses Konzept nur die Ermüdungsfestigkeit bis zur Rissinitiierung darstellt. Die Versuche hatten gezeigt, dass ein großer Teil der Gesamtlebensdauer auch in der Risswachstumsphase liegt.

6.4.3 Ergebnisse an der ursprünglichen Prüfkörpergeometrie

Die Ermüdungsfestigkeit wurde zunächst an der ursprünglichen Geometrie berechnet. Dabei erfolgte die Modellierung der Geometrie wie in Kapitel 6.2.1 beschrieben. Die Spannung in dem von der Kerbe unbeeinflussten Bereich wurde mit 100 N/mm² angesetzt. Anhand der sich an den Kerben einstellenden Spannungsspitzen wurden die in Tabelle 30 zusammengestellten Kerbformzahlen ermittelt.

Tabelle 30: Kerbformzahl K_t für die verschiedenen Versuchsserien für die einzelnen Kerbbereiche aus Modellen mit gemessener Versuchskörpergeometrie

Versuchsserie	Schweißnahtübergang	Schweißnahtübergang	Ctirnfugannaht
[-]	(PE)	(PA)	Stirnfugennaht
100	1,97	2,31	4,06
200	1,69	1,98	3,16
300	1,88	1,70	3,41
400	2,13	2,42	3,54

Durch Anwendung des Kerbfalls 200 für Kerbspannungen ergeben sich die in Tabelle 31 zusammengestellten Ermüdungsfestigkeiten.

Tabelle 31: Numerisch aus Kerbspannungen berechnete Ermüdungsfestigkeiten, umgerechnet auf Nennspannungsniveau für die maßgebenden Kerbbereiche

	Numerisch berechnete	Ermüdungsfestigkeit auf	Experimentell
	Nennspannungsn	iveau Δσ _c [N/mm²]	ermittelte
		Ermüdungsfestigkeit	
			$\Delta\sigma_{c}$ =104
PK Serie			Versagen des
	Stirnfugennaht	Maßgeb.	Prüfkörpers unter
	Surriugermant	Schweißnahtübergang	Berücksichtigung
			Größeneinfluss
	Pü 95%	Pü 95%	Pü 95%
100	50	86	70
200	63	101	92
300	59	106	80
400	57	83	83

Die numerischen Untersuchen zeigen, dass die Stirnfugennaht gegenüber dem Schweißnahtübergang deutlich kritischer zu bewerten ist. Diese Beobachtung deckt sich nicht mit den Ergebnissen aus den experimentellen Untersuchungen. Diese zeigen, dass die Stirnfugennaht bei den großen Blechdickenpaketen etwa genauso oft Initiierungspunkt des Ermüdungsanrisses ist wie die Schweißnahtüberhöhung. Bei den dünneren Blechen spielte die Stirnfugennaht sogar nur eine sehr untergeordnete Rolle.

6.5 Parameterstudie zum Blechdickeneinfluss

6.5.1 Blechdickeneinfluss an der Stirnfugennaht

Am FE Modell der Stirnfugennaht wurde eine Parameterstudie zum Blechdickeneinfluss durchgeführt. Dafür wurden die Blechdicken t₁ und t₂ des in Abb. 6-4 dargestellten Modells gleichmäßig vergrößert. Das Blechdickenverhältnis beträgt 1,0. In Tabelle 32 sind die im FE Modell ermittelten Kerbspannungsfaktoren und die daraus abgeleiteten Ermüdungsfestigkeiten dargestellt. Vergleichend sind die Ergebnisse aus den experimentellen Untersuchungen gegeben.

Tabelle 32.Parameterstudie zum Größeneffekt an der Kerbe der Stirnfugennaht (95 % Überlebenswahrscheinlichkeit)

Gesamt- blechdicke	Kerb- spannungsfaktor	Numerisch berechnete Ermüdungsfestigkeit auf Nennspannungsniveau Δσc [N/mm²] mit FAT 200	Experimentell ermittelte Ermüdungsfestigkeit Δσ _c =104 mit Berücksichtigung Größeneffekt nach Gleichung (5-1) und (5-2)
25	2,94	68,06	104
40	3,05	65,48	95
60	3,18	62,88	87
80	3,31	60,49	82
100	3,43	58,38	79
120	3,54	56,49	76
140	3,65	54,81	74
160	3,76	53,22	72
180	3,86	51,77	70
200	3,96	50,44	69

Die numerisch ermittelten Ermüdungsfestigkeiten liefern deutlich schlechtere Ergebnisse als die aus dem Wöhlerversuch abgeleiteten Ermüdungsfestigkeiten. Jedoch zeigen sowohl numerische als auch experimentelle Ergebnisse eine ausgeprägte Blechdickenabhängigkeit.

6.5.2 Einfluss der Schweißnahtüberhöhung in Abhängigkeit der Blechdicke

Der Einfluss der Blechdicke und der Schweißnahtüberhöhung wurde in dieser Parameterstudie gemeinsam untersucht. Dabei wurde vereinfacht die Annahme zugrunde gelegt, dass zwischen der Gesamtpaket- Blechdicke und der Breite der Schweißnaht immer der in Gleichung (6-10) dargestellte Zusammenhang besteht.

$$b = \tan(\alpha) * t + 1 \tag{6-10}$$

mit:

- b Schweißnahtbreite
- α Nahtöffnungswinkel
- t Gesamtpaketblechdicke

Für die folgenden numerischen Untersuchungen wurde ein Nahtöffnungswinkel von 25° zugrunde gelegt. Die Nahtüberhöhung wurde entsprechend Bewertungsgruppe B nach DIN EN ISO 5817 [5] gewählt. Untersucht wurde nur der Schweißnahtübergang mit der größeren Überhöhung.

Die Schweißnahtüberhöhung kann nach [5] mit Gleichung (6-11) berechnet werden:

$$h \le 1mm + 0.1 * b$$
 (6-11)

mit:

- h Schweißnahtüberhöhung
- b Schweißnahtbreite nach

Unter Berücksichtigung der Blechdicke und der sich daraus ergebenden Schweißnahtbreite und Schweißnahtüberhöhung wurden im numerischen Modell Kerbspannungen berechnet, die mithilfe von Kerbfall 200 in Nennspannungsniveau umgerechnet wurden. Dies lässt einen Vergleich mit der experimentell ermittelten Nennspannungs– Wöhlerlinie zu. Die Ergebnisse sind in Tabelle 33 zusammengefasst.

Tabelle 33.Parameterstudie zum Größeneffekt an der Kerbe der Nahtüberhöhung (95 % Überlebenswahrscheinlichkeit)

Gesamt- blechdicke	Kerb- spannungsfaktor	Numerisch berechnete Ermüdungsfestigkeit auf Nennspannungsniveau Δσc [N/mm²] mit FAT 200	Experimentell ermittelte Ermüdungsfestigkeit Δσ _c =104 mit Berücksichtigung Größeneffekt nach Gleichung (5-1) und (5-2)
10	1,71	117,17	104
20	1,90	105,10	104
25	1,98	100,78	104
30	2,05	97,75	100
40	2,16	92,49	95
50	2,25	88,74	91
60	2,34	85,36	87
70	2,42	82,50	85
80	2,49	80,30	82
90	2,54	78,76	80
100	2,57	77,82	79
110	2,60	76,96	77

Fortsetzung	Fortsetzung Tabelle 33									
120	2,62	76,20	76							
130	2,65	75,47	75							
140	2,67	74,80	74							
150	2,70	74,17	73							
160	2,72	73,58	72							
170	2,74	73,02	71							
180	2,76	72,50	70							
190	2,78	72,00	69							
200	2.8	71,51	69							

6.6 Bewertung der Ergebnisse

In Abb. 6-12 sind alle numerischen Untersuchungen im Vergleich mit den experimentellen Ergebnissen dargestellt. Dafür werden alle Versuchswerte unter Annahme einer Wöhlerlinie mit m=3 auf 2 Millionen Schwingspiele verschoben. Die ertragbare Spannungsschwingbreite bei 2 Millionen Schwingspielen wird im Diagramm der Gesamtdicke des Lamellenstoßes gegenübergestellt.

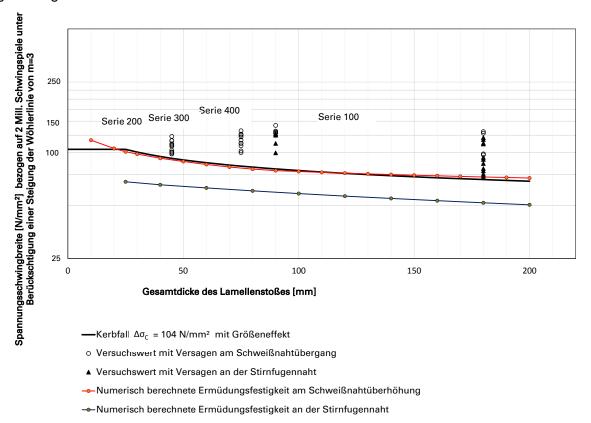


Abb. 6-12: Versuchswerte im Vergleich mit numerisch berechneten Ermüdungsfestigkeiten

Der Vergleich zeigt, dass sich der Größeneffekt mithilfe der numerischen Untersuchungen qualitativ sehr gut abbilden lässt. Sowohl das Modell für den Schweißnahtübergang als auch für die Stirnfugennaht verlaufen näherungsweise parallel zum experimentell ermittelten Größeneffekt nach Gleichung (5-1) und (5-2).

Für die Berechnung der absoluten Ermüdungsfestigkeit sind die numerischen Modelle eher ungeeignet. In Abb. 6-12 erkennt man, dass das Modell zur Berechnung der Kerbspannungen an der Stirnfugennaht über alle Blechdicken hinweg ungünstigere Ergebnisse in Bezug auf die Ermüdungsfestigkeit liefert. Dies konnte im Rahmen der experimentellen Untersuchungen jedoch nicht bestätigt werden. Hier konkurrierte die Stirnfugennaht mit dem Nahtübergang als maßgebende Kerbe. Bei den kleineren Blechdicken bis 80 mm zeigte sogar nur der Schweißnahtübergang sich als maßgebende Kerbe.

Für die Bewertung der in Abb. 6-12 dargestellten Ergebnisse sollte außerdem hervorgehoben werden, dass das Kerbspannungskonzept die Rissinitiierung als Versagen definiert. Bei den Experimentellen Schwingversuchen hingegen wurde der Prüfkörperbruch als Versagen definiert. Daraus folgt, dass die numerisch berechnete Ermüdungsfestigkeit am Schweißnahtübergang eigentlich deutlich unter dem Kerbfall 104 mit Berücksichtigung des Größeneinflusses liegen sollte. Die Risswachstumsphase kann einen großen Teil der Lebensdauer der Versuchskörper ausmachen.

Zusammenfassend können die an den FE Modellen durchgeführten Parameterstudien die aus den Versuchen abgeleitete Korrekturfunktion (5-2), zur Erfassung des Größeneinflusses, bestätigen. Die numerischen Untersuchungen verdeutlichen auch noch einmal, dass für das Kerbdetail die Blechdicke des Gesamtpaktes zu berücksichtigen ist.

7 Bruchmechanische Untersuchungen

7.1.1 Ermittlung der bruchmechanischen Kennwerte

Aus dem 100 mm dicken Blech der Serie 100 (S355J2+ N) wurden Materialproben entnommen, um die bruchmechanischen Kennwerte experimentell ermitteln zu können. Es wurden die Materialproben aus dem 100 mm Blech entnommen, da es die größte Blechdicke und im Verhältnis zu allen anderen Blechen, die für die Versuchskörper eingesetzt wurden, die schlechteste Kerbschlagarbeit aufwies. Folgende experimentelle Versuche wurden durchgeführt.

- Zyklischer Bruchmechanikversuch bei Raumtemperatur zur Ermittlung der Risswachstumsrate da/DN
- Zyklischer Bruchmechanikversuch bei Raumtemperatur zur Ermittlung des Threshold-Wertes ab dem eine Rissausbreitung zu beobachten ist.
- 3. Statischer Bruchmechanikversuch bei -35°C zur Ermittlung der Risswiderstandskurve und der Rissinitiierungskennwerte

7.1.2 Probenentnahme

Aus dem Probestück wurden zwei sogenannte Compact Tension (CT) Proben mit einer Breite von 10 mm für die zyklischen bzw. 25 mm für den statischen Bruchmechanikversuch gefertigt, siehe Abb. 7-1. Die Proben für die zyklischen Bruchmechanikversuche wurden mit IFK1 und IFK2 bezeichnet, die Probe für den statischen Bruchmechanikversuch wurde mit IFK3 bezeichnet. Die Proben IFK1 und IFK2 wurden in Dickenrichtung übereinander liegend entnommen.

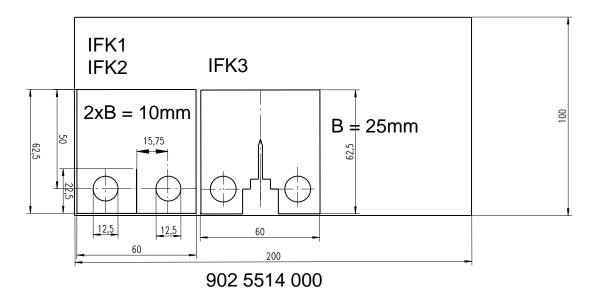


Abb. 7-1: Probenentnahme für Bruchmechanikversuche

7.1.3 Zyklische Bruchmechanikversuche

Bei einer Schwingbelastung kann ein im Material befindlicher Riss kontinuierlich wachsen. In einem zyklischen Bruchmechanikversuch wird der Rissfortschritt je Lastwechsel, ausgedrückt durch die Risswachstumsrate (da/dN), gemessen. Dabei gibt der Wert da die Risslängenänderung und der Wert dN die Änderung der Lastwechselzahl an. Diese Risswachstumsrate kann als Funktion der Schwingbreite des Spannungsintensitätsfaktors ΔK dargestellt werden, siehe Abb. 7-2.

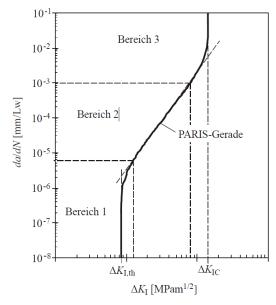


Abb. 7-2: Risswachstumsrate (da/dN), dargestellt als Funktion des Spannungsintensitätsfaktors ΔK [28]

Der Risswachstum infolge des Spannungsintensitätsfaktors kann wie in Abb. 7-2 dargestellt in 3 Bereiche unterteil werden. In Bereich I ist die Spannungsintensität gering und es findet kein Risswachstum statt. In Bereich II führt die Spannungsintensität zu einem stabilen Risswachstum. Der Schwellenwert ΔK_{th} der die beiden Bereiche voneinander abgrenzt wird als Threshold-Wert bezeichnet. In Beriech III führ die Spannungsintensität an der Rissspitze zu instabilen Risswachstum.

Die beiden zyklischen Bruchmechanikversuche, im Rahmen der Untersuchungen in diesem Forschungsprojekt, wurden gemäß ASTM E647 [3] auf einem Schenk 20 kN-Resonanzpulsator bei Raumtemperatur und Luftumgebung durchgeführt. Die Verfolgung des Risswachstums erfolgte optisch an den Seitenflächen. Aus den Messdaten Risslänge, Oberund Unterlast und den Lastspielzahlen wurden die Risswachstumsrate (*da/dN*) sowie der Spannungsintensitätsfaktor (ΔK) ermittelt.

Der Threshold-Wert △Kth wurde durch stufenweise Reduzierung der Ober- und Unterlast bei zunehmender Risstiefe ermittelt. Die Ergebnisse der zyklischen Bruchmechanikversuche sind in Abb. 7-3 zusammengestellt.

7.1.4 Statischer Bruchmechanikversuch

Der statische Bruchmechanikversuch wurde auf einer 100 kN Universalprüfmaschine RME100 bei -35°C durchgeführt. Die C(T)-Probe waren vor dem Versuch mit einem Ermüdungsanriss und mit Seitenkerben versehen worden um eine möglichst reale Spannungskonzentration zu simmulieren. Die Probe wurde nach der Methode der partiellen Entlastungen geprüft. Aus der Fläche unter der Last-Rissöffnungskurve (F-COD) wurde das sogenannte J-Integral nach ASTM E1820 [2] berechnet. Das J-Integral ist ein Kennwert der Bruchmechanik, der den Energiezustand an der Rissspitze beschreibt. Unter bestimmten Voraussetzungen lässt sich daraus ein Spannungsintensitätsfaktor ableiten.

Aus den Steigungen der Teilentlastungen wurde der Risswachstum Δa zum Zeitpunkt jeder Teilentlastung berechnet.

Durch Darstellung des J-Integrals als Funktion es Risswachtums Δa kann eine Risswiderstandskurve (JR-Kurve) definiert werden. Bei duktilem Werkstoffverhalten stumpft die Rissspitze infolge plastischer Verformungen ab. Im Rasterelektronenmikroskop kann anhand der Probe die Breite Δa_i dieser sogenannten Streched Zone nachgewiesen werden. Der sogenannte Risseinleitungswert J_i lässt sich mithilfe der Risswiderstandskurve und der Breite der Streched Zone bestimmen, vgl Abb. 7-5.Wenn die Breite der Streched Zone nicht bekannt ist, kann zur Ermittung des Risseinleitungswerts auch ein Ersatzkriterium, z.B. nach ASTM E1820 [2] angewendet werden.

7.1.5 Ergebnisse der zyklischen Bruchmechanikversuche

Die Risswachstumskurve wurde mit der Probe IFK1 bei einem R-Verhältnis von 0,1 bestimmt. Die untersuchten ΔK -Werte liegen zwischen 9 MPa \sqrt{m} und 30 MPa \sqrt{m} , siehe Abb. 7-3. Die Risswachstumsraten da/dN steigen mit zunehmenden Spannungsintensitätsfaktor an. Die experimentelle Risswachstumskurve aus den Versuchen liegt etwas über der äquivalenten definierten Kurve aus dem ASME-Code Regelwerk Section XI bei Umgebungsbedingung Luft [1].

Der Threshold-Wert, ab dem der Spannungsintensitätsfaktor zu einem stabilen Risswachstum führt wurde experimentell mit ΔK_{th} 3,2 MPa \sqrt{m} bestimmt. Das liegt unter dem im ASME Code definierten Threshold-Wert von 5 MPa \sqrt{m} [1].

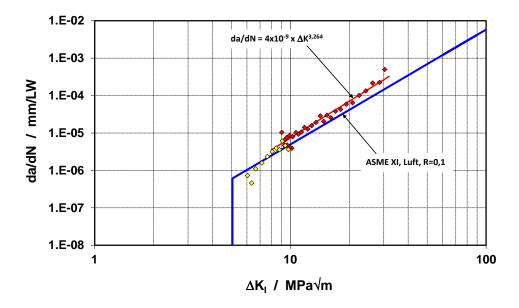


Abb. 7-3: Risswachstumskurve der Probe IFK1 und IFK2, R = 0,1 und Risswachstumsraten für R = 0,1 nach ASME XI, Luftumgebung

7.1.6 Ergebnisse der statischen Bruchmechanikversuche

Abb. 7-4 zeigt das Last-Rissöffnungsdiagramm (F-COD) der C(T)-Probe IFK3. Die Probe verhält sich elastisch-plastisch. Es tritt keine instabile Risserweiterung auf, das heißt der Werkstoff befindet sich auch bei -35°C in der Hochlage der Werkstoffzähigkeit. Die Werkstoffzähigkeit ist so hoch, dass die Kapazität des Wegaufnehmers von 4 mm vor der Probenhöchstlast erreicht wurde und der Versuch deshalb beendet werden musste. Aus den Flächen unter den Last Rissöffnungskurven wurde das J-Integral und aus den Teilentlastungen das Risswachstum Δa berechnet. Aus der Kurvenanpassung der *J-Δa*-Punkte ergibt sich die Risswiderstandskurve (*J-* Δa), Abb. 7-5. Die Risswiderstandskurve ist steil, was auf sehr ein sehr zähes Materialverhalten hindeutet. Aus der Risswiderstandskurve lassen sich die Bruchmechanikkennwerte *Ji* bzw. das Ersatzkriterkum *Jo,2vc* ableiten. Der *J-*Wert ergibt sich mit einer Breite der Stretched Zone Δaivon 0,162 mm zu 164 N/mm. Abb. 7-6 zeigt einen Ausschnitt der Bruchfläche mit der Stretched Zone. Der *Jo,2vc*-Wert ergibt sich zu 191 N/mm.

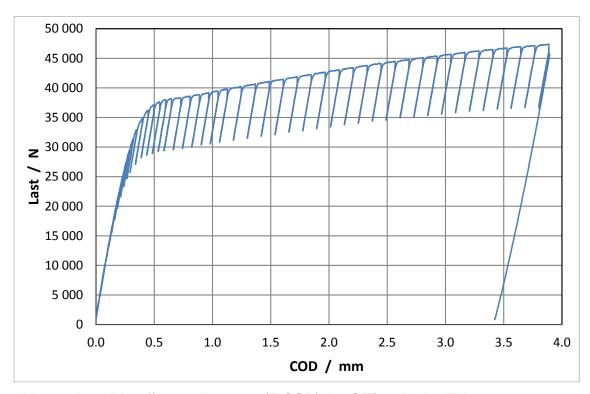


Abb. 7-4: Last-Rissöffnungsdiagramm (F-COD) der C(T)25-Probe IFK3

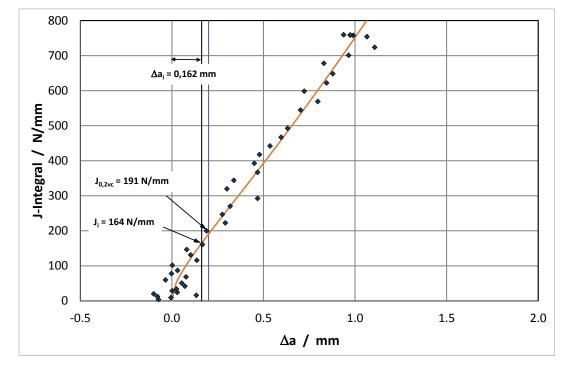


Abb. 7-5:Probe IFK3, Ermittlung der Bruchmechanikkennwerte Ji und J_{0,2vc}

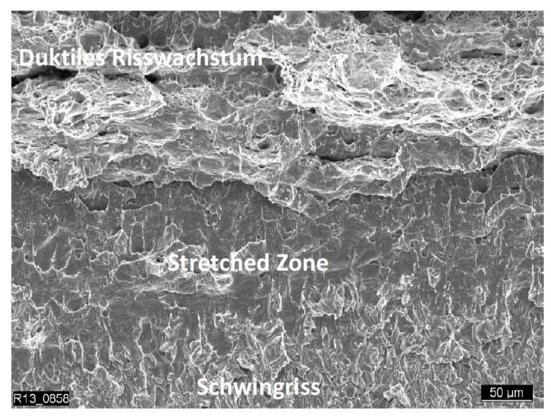


Abb. 7-6: Probe IFK3, Beispiel einer Aufnahme der Stretched Zone in Raster-Elektronenmikroskop

7.1.7 Zusammenfassung der Bruchmechanik Versuche

An einer Materialprobe aus S355 J2+N wurden zyklische und statische Bruchmechanikversuche durchgeführt. Der Werkstoff verhält sich bei -35°C im statischen Bruchmechanikversuch sehr zäh. Die zyklische Risswachstumsgeschwindigkeit bei Raumtemperatur liegt über der Risswachstumsgeschwindigkeit des Regelwerks ASME-Code Section XI unter Luftumgebung. [2] Der Threshold-Wert bei Raumtemperatur ist kleiner als der Threshold-Wert des Regelwerks ASME-Code Section XI unter Luftumgebung.

7.2 Bruchmechanische Berechnungen

7.2.1 Überblick

Mit den ermittelten Kennwerten wurden nachfolgende bruchmechanische Berechnungen durchgeführt. Die Spannungsintensitätsfaktoren an der Rissspitze wurden mit der Sub-Modelltechnik in Ansys Workbench ermittelt. Abb. 7-7 zeigt das Submodell mit dem Rissspitzenmodell am Wurzelpunkt der Stirnfugennaht.

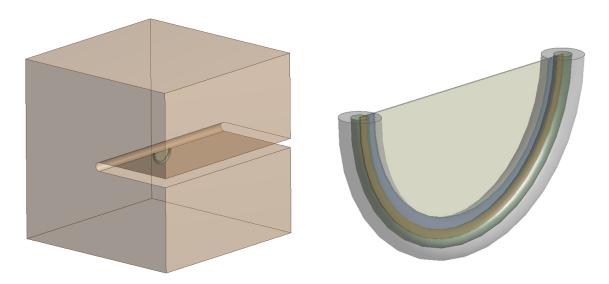


Abb. 7-7: Rissspitzenmodell

7.2.2 Auswertung von Risswachstumskurven

Bei den Prüfkörpern der Versuchsserie 100 und bei zwei Prüfkörpern der Serie 300 sowie bei einem Prüfkörper der Serie 500 wurde das Risswachstum nachgebildet, siehe dazu Abb. 7-8.

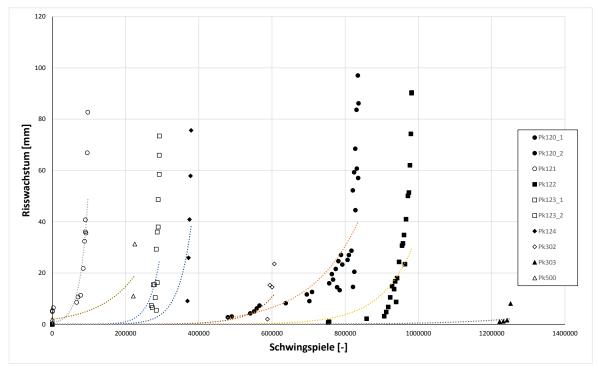


Abb. 7-8: Darstellung der Rissausbreitung in Abhängigkeit der Schwingspielzahl mit Visualisierung der Trendlinien

Vergleicht man zusätzlich die Rissentwicklung mit den gemessenen Dehnungsschwingbreiten, lässt sich erkennen, dass die Dehnungen und die Risslänge ein vergleichbares Verhalten aufweisen und exponentiell ansteigen, Abb. 7-9.

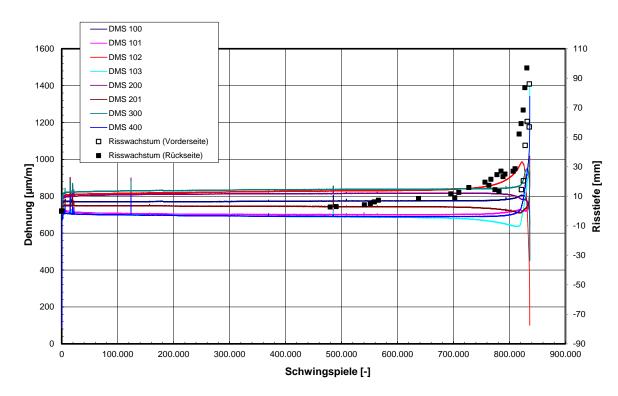


Abb. 7-9: Dehnungsschwingbreiten des Prüfkörpers 120 mit Darstellung der Risstiefe in Abhängigkeit der Schwingspielzahl

8 Einsatz der Phased-Array Technik

8.1 Funktionsweise von Ultraschall Phased-Array Technik

Eine neuere Entwicklung in der Zerstörungsfreien Materialprüftechnik ist die sogenannte Ultraschall *Phased-Array Technik*. Die Technik ist schon eine ganze Weile bekannt, wurde aber aufgrund der technisch anspruchsvollen Anwendung und des hohen Preises lange Zeit nicht industriell eingesetzt. Das hat sich inzwischen geändert und die Phased-Array-Technik findet auch im Stahlbau immer mehr Anwendung.

Eine weitere Bezeichnung hierzulande beschreibt die Besonderheit des Verfahrens sehr gut: Ultraschall-Gruppenstrahlertechnik. Denn genau darin liegt ein großer Unterschied zur herkömmlichen Ultraschalltechnik in der zerstörungsfreien Werkstoffprüfung. Der Ultraschallsensor ist in viele einzelne Elemente unterteilt. Übliche Unterteilungen sind 16, 32, 64, 128 oder 256 Elemente. Diese werden durch elektronische Steuerung zeitlich verzögert zum Schwingen angeregt, wodurch das Ultraschallfeld in seiner Ausrichtung, Tiefenlage und örtlichen Lage verändert werden kann. Mit nur einem Prüfkopf ist Schwenken, Fokussieren und Verschieben der Schallwellen möglich. Das bedeutet, dass durch die hohe Flexibilität der Strahler ein komplettes Werkstück sehr schnell geprüft werden kann. Während also bei der Ultraschallwerkstoffprüfung (UT) die Ultraschallkeule unter einem fixen Winkel in das Prüfstück geleitet wird und mehrere Prüfdurchgänge mit verschiedenen Winkeln notwendig sind, schwenkt die Ultraschallkeule bei der Phased-Array-Technik kontinuierlich durch das Prüfstück (vgl. Abb. 8-1).

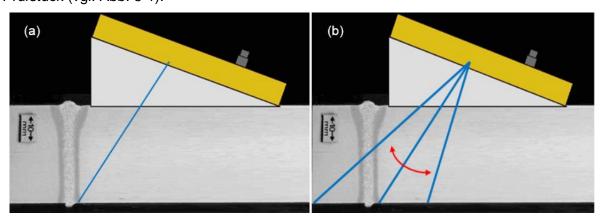


Abb. 8-1: Ultraschallkeule bei (a) normaler Ultraschalltechnik und (b) Phased-Array-Technik

Bei der UT Untersuchung wird ein Kurvenbild; das sogenannte A-Bild, auf dem die Amplituden des Ultraschallsignals zu sehen sind, erzeugt (vgl. auch Abb. 8-2).

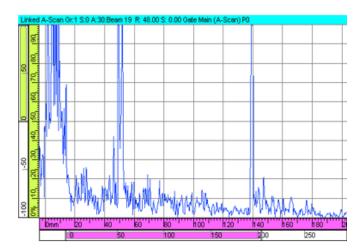


Abb. 8-2: Erzeugtes A-Bild bei der UT

Bei der Phased-Array-Technik wird ebenso für jeden Winkel, unter dem die Ultraschallwellen in das Prüfstück gesendet werden, ein A-Bild erzeugt. Diese Vielzahl an A-Bildern wird dann zu einem sogenannten S-Bild (Scan-Bild) verarbeitet. Das S-Bild zeigt den Querschnitt des Prüfkörpers unter den eingestrahlten Winkeln. In Abb. 8-3 ist dargestellt, wie der Prüfsensor entlang der *Scan axis* geführt wird. Währenddessen werden also nicht nur sehr viele A-Bilder erzeugt, sondern mit jedem Stück, das der Prüfsensor entlang der Achse verschoben wird, wird auch ein weiteres S-Bild erzeugt. Setzt man alle diese S-Bilder zusammen, entsteht das sogenannte C-Bild. Dieses entspricht der Draufsicht auf das Prüfstück. Die Phased-Array Technik ermöglicht also aus der Erzeugung der A-Bilder die Generierung weiterer Bilder (S-und C-Bilder), wodurch eine eindeutige Lagebestimmung und eine eindeutige Bemaßung der Störstelle bzw. des Fehlers im Prüfstück möglich werden. Zudem wird die gesamte Berechnung digital durchgeführt und kann somit leicht abgespeichert werden. Das ist ein weiterer Vorteil gegenüber der normalen Ultraschalltechnik, bei der ein Werkstück online geprüft werden muss.

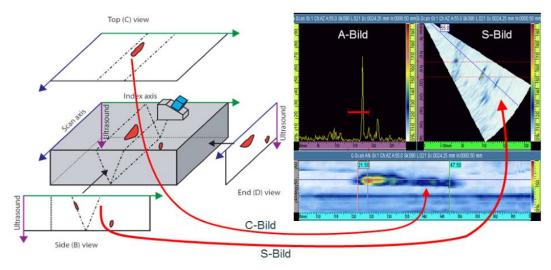


Abb. 8-3: Erzeugte Bilder bei der Phased-Array-Technik

8.2 Zerstörungsfreie Prüfung des Wurzelpunktes der Stirnfugennaht mit Phased-Array

Vor der Durchführung der Schwingversuche wurde an allen Prüfkörpern der Wurzelpunkt der Stirnfugennaht von vier Seiten mit Phased-Array dokumentiert. Die Ultraschalluntersuchungen wurden mit einem Wegaufnehmer als Linearscan über die Prüfkörperbereite in einem C-Bild dokumentiert. Abb. 8-4 zeigt das C-Bild des Prüfkörpers und Abb. 8-5 das zugehörige S-Bild an der Position x = 20 mm.

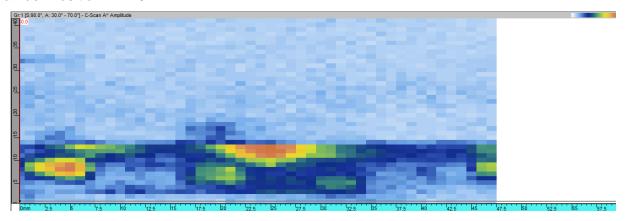


Abb. 8-4: C-Bild Prüfkörper 124.3

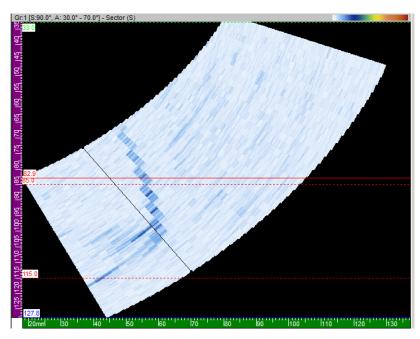


Abb. 8-5: S-Bild 124.3 x = 20 mm

8.3 Vorversuche Risswachstumsdokumentation am Wurzelpunkt der Stirnfugennaht

Um das Risswachstum am Wurzelpunkt der Stirnfugennaht während der Schwingversuche mit Ultraschall zu detektieren, wurde eine neue Versuchstechnik erprobt und bei den Schwingversuchen angewendet. In den Vorversuchen wurde auf einen gekerbten

Quadratstahl ein Ultraschallprüfkopf so angekoppelt, dass der Kerbgrund der künstlichen Kerbe in der Ultraschallkeule lag. Die Ankopplung an den Stahl erfolgte über die Vorlaufstrecken. Nach mehreren Testklebungen zeigte sich, dass mit einem nach dem aushärten elastisch bleibenden Sekundenkleber die beste dauerhafte Ankopplung an den Stahl mit geringster Dämpfung durch das Ankoppeln erfolgt. Zusätzlich zum Ankleben wurden die Vorlaufstrecke und der Prüfkopf durch eine Klemmvorrichtung auf dem Versuchskörper gehalten, vgl. Abb. 8-6.

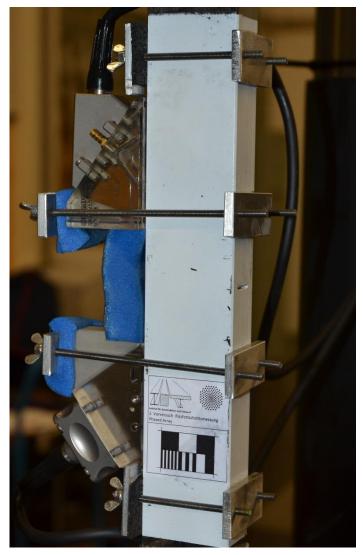


Abb. 8-6: Ankopplung von Phased-Array Prüfköpfen auf einem Versuchskörper durch Aufkleben der Vorlaufstrecken und Aufklemmen der Prüfköpfe.

8.4 Steuerung zur Kopplung einer Universalprüfmaschine mit einem Phased-Array Prüfgerät

Da sich mit dem Ansteigen der mechanischen Belastung die Schallgeschwindigkeit von Stahl signifikant ändert, war es notwendig, eine Steuerung zu entwickeln, die bei einer vorgebenen konstanten Belastung während der Schwingversuche ein Signal zum Aufzeichnen eines S-

Bildes an das Ultraschallprüfgerät sendet. In der Prüfmaschinensteuerung wurde für die Vorversuche ein Belastungszyklus programmiert, der aus einem Hauptbelastungsblock und einem Markierungsblock besteht. Im Hauptbelastungsblock (Spannungsverhältnis R = 0,1) wurde das Risswachstum erzeugt. Im Markierungsblock (Spannungsverhältnis R = 0,5) wurden Rastlinien auf der Bruchfläche erzeugt. Zwischen den beiden Blöcken wurde eine Pause von 20 s programmiert, bei der die konstante Mittellast aus dem Hauptlastblock gehalten wurde. Alle 10.000 Lastwechsel erfolgte eine Pause und ein Wechsel zwischen Hauptlast- und Markierungsblock. Während des Schwingversuches wurde ein Kraftsignal aus der Prüfmaschinensteuerung über ein RedLab USB Minimesslabor ausgelesen, vgl. Abb. 8-7. Die Software Steuerung des RedLab wurde in diesem Projekt entwickelt und in .net programmiert. Sobald ein konstantes Kraftsignal länger als 5 s mit der vorgegebenen Mittellast am RedLab anliegt, wurde über die Software ein TTL Signal im RedLab ausgelöst und an das Omniscan Ultraschallgerät gesandt. Das TTL-Signal wird im Omniscan als Wegsignal verarbeitet. Beim Auslösen des Signals wurde im Omniscan im C-Bild ein weiterer Wegschritt aufgezeichnet. Somit entspricht 1 mm Weg im C-Bild 10.000 Schwingspielen.

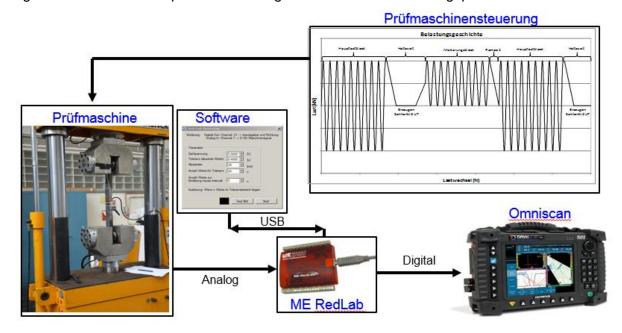


Abb. 8-7: Kopplung einer Universalprüfmaschine mit einem Phased-Array Prüfgerät über RedLab.

Die Daten aus den Ultraschallmessungen wurden mit den Rastlinien aus den Bruchbildern abgeglichen. Die Vorversuche zeigen, dass ein Risswachstum qualitativ mit Ultraschall bewertet werden kann. In Abb. 8-8 ist das Risswachstum dargestellt, das durch die Auswertung der Rastlinien ermittelt wurde. Abb. 8-9 zeigt das S-Bild mit zugehörigem A-Bild bei 80.000 Schwingspielen.

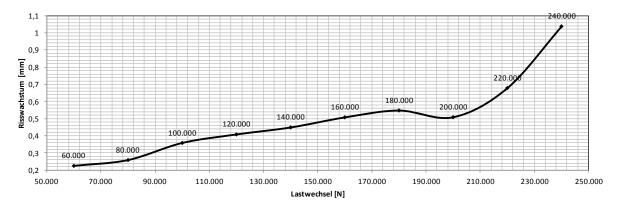


Abb. 8-8: Risswachstum ermittelt an Rastlinien auf einer Bruchfläche

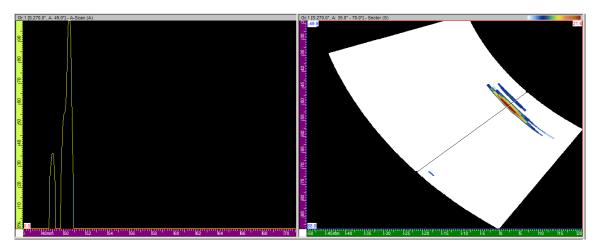


Abb. 8-9: S-Bild mit zugehörigem A-Bild bei 49° bei 80.000 Lastwechseln

Nach erfolgreicher Testphase an zwei Vorversuchskörpern wurde der Messaufbau auf die Schwingversuche am Lamellenstoß adaptiert. Bei allen Ermüdungsversuchen wurden versucht, den Rissfortschritt mit Ultraschall zu dokumentieren. Aufgrund einer beschränkt zu Verfügung stehenden Gerätetechnik konnte pro Versuch immer nur ein Wurzelpunkt der Stirnfugennaht von einer Seite angeschallt werden. Da bei vielen Versuchen nicht die Stirnfugennaht, sondern der Schweißnahtübergang zum Versagen geführt hat, liegen nicht von allen Schwingversuchen Ergebnisse aus Phased-Array Rissfortschrittsmessungen vor.

9 Zusammenfassung und Ausblick

9.1 Zusammenfassung

Im Rahmen des Forschungsprojektes wurde die Ermüdungsfestigkeit von Lamellenstößen untersucht und klassifiziert.

Für die experimentellen Untersuchungen wurden Prüfkörper hergestellt, die die im Brückenbau üblichen Blechdicken abdecken. Die Fertigung der Prüfköper erfolgte in Zwangslage, was einer realistischen Montagesituation entspricht.

Die Prüfkörper wurden anschließend einem Wöhlerversuch zur Bestimmung der Schwingfestigkeit des Konstruktionsdetails unterzogen. Es zeigte sich, dass sowohl der Schweißnahtübergang, als auch die Stirnfugennaht maßgebend werden können. Um eine zuverlässige Kerbfalleinordnung abzuleiten, wurden die Versuchsergebnisse statistisch ausgewertet. Für eine möglichst große Stichprobe wurden zusätzlich Versuchsergebnisse aus [20] und [21] mit einbezogen. Die statistische Auswertung von 58 Ermüdungsversuchen führt zu einem Kerbfall $\Delta\sigma_c$ = 104 N/mm² Alle Versuchsergebnisse können Tabelle 44 im Anhang 11.2 entnommen werden.

Aufgrund der unterschiedlichen untersuchten Blechdicken, konnte aus den experimentellen Versuchen ein Größeneinfluss abgeleitet werden. Dieser verhält sich in Abhängigkeit zur Gesamtblechdicke und ist vergleichbar mit dem Größeneinflusses eines Stumpfstoßes.

Im Rahmen der numerischen Untersuchungen konnte die Korrekturfunktion zur Erfassung des Größeneinflusses bestätigt werden.

In den Bruchmechanik- und Ultraschalluntersuchungen wurde gezeigt, dass ein großer Teil der Lebensdauer der Prüfkörper nach Rissinitierung in der Risswachstumsphase stattfinden kann.

Die hier dargestellten numerischen Untersuchungen mit dem Kerbspannungskonzept bis zur Rissinitiierung in Kombination mit den Untersuchungen zur Risswachstumsphase, sind aber zum jetzigen Stand noch eher ungeeignet, um Aussagen zur Gesamtlebensdauer des Lamellenstoßes zu treffen.

Im Rahmen des Forschungsprojektes wurden auch Ermüdungsversuche am sogenannten Treppenstoß durchgeführt. Die Ergebnisse deuten darauf hin, dass sich dieser in Bezug auf die Ermüdungsfestigkeit ähnlich wie der Lamellenstoß verhält.

Die experimentellen Ergebnisse am Lamellenstoß zeigen, dass sich das Konstruktionsdetail in Bezug auf die Ermüdung nicht schlechter als eine herkömmliche quer verlaufende Stumpfnaht verhält. Eine Einordnung in den Kerbfall 90 nach DIN EN 1993-1-9 [8], Tabelle 8.3 ist demnach möglich. Zudem kann die gleiche Korrekturfunktion zur Berücksichtigung des Größeneinflusses genutzt werden. Für die Blechdicke t sollte dabei die Gesamtdicke des Blechpaketes angesetzt werden.

9.2 Ausblick

Im Anschluss an das Forschungsprojekt wurde für die kommende Überarbeitung des Eurocodes 3 ein zusätzliches Kerbdetail für DIN EN 1993-1-9 [8], Tabelle 8.3: Quer laufende Stumpfnähte vorgeschlagen [16]. Die vorgeschlagene Ergänzung ist in Tabelle 34 dargestellt.

Tabelle 34: Vorschlag Kerbfalleinordnung in DIN EN 1993-1-9 [8], Tabelle 8.3

Kerbfall	Konstruktionsdetail	Symbol	Beschreibung	Anforderungen
				- Siehe Detail (5), (6),
	0.15 p	\ /		⑦.
90	VI TITLE		Mehrteiliger,	- Beim Schweißen
Blechdicken-		$\stackrel{\checkmark}{\smile}$	quer zur	des Stupmfstoßes
abhänigkeit für		\ /	Kraftrichtung	darf die
t > 25 mm:	≤ 1/4	Χ	verlaufender	Stirnfugennaht nicht
$k_s = (25/t)^{0.2}$		/\	Stumpfstoß	aufgeschmolzen
		0400 1 40		werden

10 Literaturverzeichnis 99

10 Literaturverzeichnis

[1] [ASME XI Rules for Inservice Inspection of Nuclear Power Plant Components, The American Society of Mechanical Engineers, ASME 2007 Edition Juli 1, 2007

- [2] ASTM E1820-08a: Standard Test Method for Measurement of Fracture Toughness. Beuth Verlag GmbH, Auslands Normen-Service (ANS), 10772 Berlin
- [3] ASTM E647-08 Standard Test Method for Measurement of Fatigue Crack Growth Rates, Beuth Verlag GmbH, Auslands Normen-Service (ANS), 10772 Berlin
- [4] Brozzetti, J.; Hirt, M. A.; Ryan, I.; Sedlacek, G.; Smith, I. F. C.: Background Documentation 9.01: Background information on fatigue design rules Statistical evaluation Chapter 9. Eurocode 3 Editorial Group. 1989
- [5] DIN EN ISO 5817: Schweißen Schmelzverbindungen an Stahl, Nicke, Titan und deren Legierungen – Bewertungsgruppen von Unregelmäßigkeiten. Juni 2014
- [6] DIN EN 1993-1-1: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1993-1-1:2005 + AC:2009. Berlin: Beuth Verlag GmbH (2010-12).
- [7] DIN EN 1993-1-8: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-8: Bemessung von Anschlüssen. Dezember 2010
- [8] DIN EN 1993-1-9: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-9: Ermüdung. Dezember 2010
- [9] DIN EN 1993-1-10: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-10: Stahlsortenauswahl im Hinblick auf Bruchzähigkeit und Eigenschaften in Dickenrichtung, Dezember 2010
- [10] DIN EN ISO 4063: Schweißen und verwandte Prozesse Liste der Prozesse und Ordnungsnummern (Dreisprachige Fassung EN ISO 4063:2010)
- [11] DIN EN 1993-2 NA: Nationaler Anhang zu Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 2: Stahlbrücken. Dezember 2010
- [12] DIN EN 1993-2: Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 2: Stahlbrücken. Dezember 2010
- [13] DIN-Fachbericht 103: Stahlbrücken. Beuth-Verlag. März 2009
- [14] DS 804: *Druckschrift 804: Eisenbahnbrücken.* Karlsruhe: Druckschriftenwerk der Deutschen Bahn AG, 1965
- [15] ESIS P2-92: ESIS Procedure for Determining the Fracture Behaviour of Materials, European Structural Integrity Society-ESIS, January 1992
- [16] Kuhlmann, U.; Drebenstedt, K.; Kudla, K.: Fatigue classification of lamellae joints, Background Paper, CEN/TC 250/SC 3/WG 9 Document N 130, 2017

100 10 Literaturverzeichnis

[17] Helms, R.; Jaenicke, B.; Wohler, H.; Bork, C.-P.: Zur Schwingfestigkeit großer geschweißter Stahlträger / Bundesanstalt für Materialforschung und -prüfung (BAM), Forschungsbericht 164. 1989. – Forschungsbericht

- [18] Hobbacher, A.: Recommendations for fatigue design of welded joints and components, IIW-Document No. XIII-2151-07/XV-1254-07. 2007
- [19] ISO 12135: Metallic Materials Unified Method of Test for the Determination of Quasistatic Fracture Toughness, First Edition 2002-12-01, ISO Copyright Office, 1211 Geneva 20, Switzerland
- [20] Kudla, K.: Ermittlung einer Wöhlerkurve durch experimentelle und theoretische Untersuchungen für den Kerbfall: "Mehrteilige, quer zur Kraftrichtung durch Stumpfnaht verbundene Bauteile" am Beispiel "Lamellenstoß der Brücke Lochkov". Diplomarbeit, Hochschule Mittweide. 2010
- [21] Kuhlmann, U.; Euler, M.; Kudla, K.: Weiterentwicklung und Spezifizierung der Ermüdungsnachweise für Straßen- und Eisenbahnbrücken aus Stahl. Schlussbericht zum DASt/IGF-Forschungsvorhaben Nr. 15380 N/1. 2011 (in Druck)
- [22] Kuhlmann, U.; Kudla, K.: Der Lamellenstoß im Stahl- und Verbundbrückenbau, In: Stahlbau 82, Seite 70-77, Februar 2013
- [23] Kuhlmann, U.; Kudla, K.: Ermüdungsfestigkeit von Lamellenstößen bei Vollwandträgern mit dicken Gurten – Experimentelle und numerische Untersuchungen, In: Stahlbau 84, Seite 203-212, März 2015
- [24] Olivier, R.; Ritter, W.: LBF 3205. Schwingfestigkeitsversuche für den Stumpfstoß in übereinanderliegenden Gurtplatten. Laboratorium für Betriebsfestigkeit, Fraunhofer Institut Darmstadt. 1974, unveröffentlicht. Forschungsbericht
- [25] Olivier, R.; Ritter, W.: LBF 4879. Schwingfestigkeitsversuche für den Stumpfstoß in drei übereinanderliegenden Gurtplatten. Laboratorium für Betriebsfestigkeit, Fraunhofer Institut Darmstadt. 1982, unveröffentlicht. – Forschungsbericht
- [26] RIL 804: Richtlinie 804: Eisenbahnbrücken. 2000
- [27] Roos, E., and U. Eisele: Determination of Material Characteristic Values in Elastic-Plastic Fracture Mechanics by Means of J-Integral Crack Resistance Curves. ASTM Journal of Testing and Evaluation, JTEVA, Vol. 16, No. 1, Jan. 1988, Seite 1-11
- [28] Richard, H-A., Sander, M.: Ermüdungsrisse Erkennen, sicher beurteilen, vermeiden. 2 Auflage, Springer Verlag 2008
- [29] Seeger, T.: Grundlagen der Betriebsfeastigkeitsnachweise Stahlbau Handbuch Teil1B. Köln: Stahlbau-Verlagsgesllschaft mbH 1996
- [30] Sonsino, C.: Suggested allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept, *IIW DocumentXIII-2216-08 / XV-1285-08*

10 Literaturverzeichnis 101

[31] Zirn, R.: Schwingfestigkeitsverhalten geschweißter Rohrknotenpunkte und Rohrlaschenverbindungen. Dissertation, Universität Stuttgart, 1975 102 10 Literaturverzeichnis

11 Anhang 103

11 Anhang

11.1 Chemische und Mechanische Kennwerte

Die Kennwerte der Versuchsserie 100 entsprechen denen des Vorgängerprojektes [20]:

Tabelle 35: Chemische Kennwerte der Bleche 20 mm, S355J2+N

Chemische Zusammensetzung [%]														
С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Al
0,19	0,25	1,47	0,012	0,008	0,005	0,01	0,00	0,05	0,03	0,008	0,001	0,002	-	0,04

Tabelle 36: Chemische Kennwerte der Bleche 25 mm Serien 200 und 400, S355J2+N

Chemi	Chemische Zusammensetzung [%]													
С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Al
0,15	0,23	1,4	0,01	0,002	0,00	0,02	0,00	0,01	0,03	0,00	0,01	0,00	0,000	0,03
6	5	4	4	6	4	7	3	3	2	2	6	1	3	6

Tabelle 37: Chemische Kennwerte der Bleche 80 mm, S355NL

Chemi	Chemische Zusammensetzung [%]													
С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Α
0,151	0,466	1,53	0,009	0,0002	0,0041	0,167	0,03	0,171	0,033	0,001	0,027	0,003	0,0001	-

Tabelle 38: Chemische Kennwerte der Bleche 100 mm, S355J2+N

Chemi	Chemische Zusammensetzung [%]													
С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Al
0,18	0,42	1,49	0,01	0,003	0,007	0,07	0,00	0,05	0,03	0,01	0,00	0,00	-	0,034

Tabelle 39: Chemische Kennwerte der Bleche 40 mm Serie 300, S355J2+N

Chemi	sche Zu	samme	nsetzun	g [%]										
С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Al
0,139	0,496	1,57	0,012	0,0006	0,0044	0,034	0,013	0,044	0,04	0,001	0,023	0,003	-	0,039

Tabelle 40: Chemische Kennwerte der Bleche 50 mm Serie 300 und 400, S355NL

Chem	ische Zu	ısamme	ensetzur	ng [%]										
С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Al
0,15	0,33	1,55	0,011	0,003	0,005	0,05	0,02	0,05	0,05	0,01	0,03	0,01	0,0004	0,045

Tabelle 41: Chemische Kennwerte der Bleche 40 mm Serie 500, S355J2+N

Ī	Chemi	sche Zu	samme	nsetzun	g [%]										
	С	Si	Mn	Р	S	N	Cu	Мо	Ni	Cr	V	Nb	Ti	В	Al
	0,16	0,19	1,47	0,014	0,008	0,009	0,18	0,04	0,07	0,09	0,00	0,006	0,003	ı	0,035

Tabelle 42: Mechanische Kennwerte aus dem Zugversuch

Zugversuch					
Blechdicke [mm]	Stahlgüte [-]	Prüftemperatur [-]	Streckgrenze	Zugfestigkeit	Bruchdehnung
			[N/mm²]	[N/mm²]	[%]
20	S355J2+N	RT	378	529	29,2
25	S355J2+N	RT	426	551	29,3

104 11 Anhang

Fortsetzung Tabelle	e 42				
40 (Serie 300)	S355NL	RT	394	527	33
40 (Serie 500)	S355J2+N	RT	379	545	24,3
50	S355NL	RT	364	528	27
80	S355NL	RT	395	536	27,6
100	S355J2+N	RT	330	523	27,0

Tabelle 43: Mechanische Kennwerte aus dem Kerbschlagbiegeversuch

Kerbschlagbiegev	ersuch						
Blechdicke	Stahlgüte	Temp.	Probenform		Einzelwerte		Mittelwert
[mm]	[-]	[°C]	[-]	[J]	[J]	[J]	[J]
20	S355J2+N	-20	KV	106	94	91	97
25	S355J2+N	-20	KV	233	218	219	223
40 (Serie 300)	S355NL	-50	CHP-V	272	263	234	256
40 (Serie 500)	S355J2+N	-20	KV2/300	110	126	130	122
50	S355NL	-50	KV450	132	143	132	136
80	S355NL	-50	CHP-V	163	161	154	159
100	S355J2+N	-20	KV450	124	109	142	125

11.2 Skalierte und normierte Werte

Tabelle 44: Normierte und skalierte Versuchswerte (auf Basis von Nennspannungen)

Prüfkörper	Spannungs- schwingbreite Δσ [N/mm²]	Schwingspielzahl bei Prüfkörperbruch N _{failure} [-]	Kritische Kerbe nach. Abb. 3-14	Spannungsschwingbreite Δσ [N/mm²] skaliert auf 25mm	Spannungsschwingbreite Δσ [N/mm²] skaliert auf 25mm und normiert auf 2 Millionen Schwingspiele
Series 100 (t ₁	+ t ₂ = 180 mm)				
100	243	58 649	(2)	361	111
101	177	230 230	(2)	263	128
102	174	307 428	(2)	258	138
103	262	99 959	(1)	389	143
104	237	141 186	(1)	352	145
105	150	445 575	(2)	223	135
106	180	180 701	(2)	267	120
107	174	796 360	(3)	258	190
109	175	179 803	(3)	260	116
112	152	1 261 370	(2)	226	193
120	158	836 230	(2)	234	175
121*	147	2 223 975	No failure		
121	200	97 075	(2)	297	108
122	155	954 726	(2)	230	180
123	214	292 475	(2)	318	167
124	194	379 075	(2)	288	165
Series 200 (t ₁	+ t ₂ = 45 mm)				
200	220	202 550	(1)	247	115
201	125	2 308 146	(1)	141	147
203	273	131 199	(1)	307	124
205	238	234 103	(1)	268	131
207*	111	7 017 158	(1)		
208	173	623 097	(1)	195	132
209	176	469 600	(1)	198	122

11 Anhang

Fortsetzung Tal	pelle 44				
210	185	579 047	(1)	208	138
211	190	289 175	(1)	214	112
212	241	133 048	(1)	271	110,
220	144	631 700	(1)	162	110
221	124	1 461 225	(1)	139	126
222†	-	1 359 610	(1)		
223	143	694 250	(1)	161	113
224	164	580 425	(1)	184	122
Series 300 (t ₁ +			()		
300	194	533 875	(3)	251	161
301	186	665 125	(3)	240	166
302	196	610 075	(3)	253	170
303	148	1 305 600	(3)	191	166
304	173	1 105 200	(3)	224	183
305	145	1 362 000	(3) (2)	187	164
306*	122	2 267 250	No failure		
306	195	381 850	()	252	145
307*	132	3 412 375	No failure		
307	191	281 375	(2)	247	128
308†	150	1 190 794	(3) (2)		1
309†	175	825 749	(3)		
Series 400 (t ₁ +		020 7 10	(0)		
400	203	339 425	(3)	253	140
401	243	283 750	(3)	303	158
402	150	624 525	(3)	187	127
403	143	972 500	(3)	178	140
404*	117	1 712 875	No failure		<u> </u>
404	257	151 725	(3)	320	138
405	194	270 700	(3)	242	124
406	126	1 606 875	(3)	157	146
407	153	1 090 500	(3)	191	156
408	147	1 462 910	(3)	183	165
409	200	457 400	(3)	249	152
	s [20] (t1 + t2 = 1	180 / 190 mm)	. ,		
G.Pk1	133	1 158 024		200	166
G.Pk2	133	585 189	(3)	200	132
G.Pk3	133	1 018 811	(3)	200	159
G.Pk4	150	416 326	(3)	225	133
G.Pk5	150	586 503	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	225	150
G.Pk6	100	890 148	(3)	150	115
G.Pk7	180	149 284	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	270	114
G.Pk8	180	223 084		270	130
G.Pk9x	120	249 174	(3)	180	90
G.Pk10	120	659 757	(3)	180	124
G.Pk11	120	1 244 958	(3)	180	154
G.Pk13	165	285 154	(3)	248	129
R≈0,1 bei allen			(3)	•	

R≈0,1 bei allen Prüfkörpern

Umrechung der skalierten und normierten Werte: $\Delta \sigma_{25mm} = \Delta \sigma * \left(\frac{25}{t}\right)^{-0.2}$, $\Delta \sigma_{25mm/2.mill} = \left(\frac{\Delta \sigma^3 * N_{Failure}}{2*10^6}\right)^{1/3} * \left(\frac{25}{t}\right)^{-0.2}$

^{*} test aborted, specimen without detected fatigue crack, restart of the investigation with higher nominal stress

[†] test aborted because of testing machine failure: restart of the investigation with higher nominal stress (specimen without detected fatigue crack)

^{(1)/(2)/(3)} Kritische Kerben (3 = Stirnfugennaht, 1 or 2 = Schweißnaht 1 bzw. 2 am Schweißnahtübergang)

x Statistischer Ausreißer

<u>DASt-Richtlinien (deutscherstahlbau.de)</u>

Forschungsberichte (deutscherstahlbau.de)

